31
3

Approximately-symmetric neural networks for quantum spin liquids

Abstract

We propose and analyze a family of approximately-symmetric neural networks for quantum spin liquid problems. These tailored architectures are parameter-efficient, scalable, and significantly out-perform existing symmetry-unaware neural network architectures. Utilizing the mixed-field toric code model, we demonstrate that our approach is competitive with the state-of-the-art tensor network and quantum Monte Carlo methods. Moreover, at the largest system sizes (N=480), our method allows us to explore Hamiltonians with sign problems beyond the reach of both quantum Monte Carlo and finite-size matrix-product states. The network comprises an exactly symmetric block following a non-symmetric block, which we argue learns a transformation of the ground state analogous to quasiadiabatic continuation. Our work paves the way toward investigating quantum spin liquid problems within interpretable neural network architectures

View on arXiv
Comments on this paper