ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2103.14068
  4. Cited By
Differentially Private Normalizing Flows for Privacy-Preserving Density
  Estimation

Differentially Private Normalizing Flows for Privacy-Preserving Density Estimation

25 March 2021
Chris Waites
Rachel Cummings
ArXiv (abs)PDFHTML

Papers citing "Differentially Private Normalizing Flows for Privacy-Preserving Density Estimation"

28 / 28 papers shown
Title
TraDE: Transformers for Density Estimation
TraDE: Transformers for Density Estimation
Rasool Fakoor
Pratik Chaudhari
Jonas W. Mueller
Alex Smola
64
30
0
06 Apr 2020
Semi-Supervised Learning with Normalizing Flows
Semi-Supervised Learning with Normalizing Flows
Pavel Izmailov
Polina Kirichenko
Marc Finzi
A. Wilson
DRLBDL
84
115
0
30 Dec 2019
Deep Learning with Gaussian Differential Privacy
Deep Learning with Gaussian Differential Privacy
Zhiqi Bu
Jinshuo Dong
Qi Long
Weijie J. Su
FedML
58
208
0
26 Nov 2019
Neural Density Estimation and Likelihood-free Inference
Neural Density Estimation and Likelihood-free Inference
George Papamakarios
BDLDRL
70
46
0
29 Oct 2019
Differentially Private Algorithms for Learning Mixtures of Separated
  Gaussians
Differentially Private Algorithms for Learning Mixtures of Separated Gaussians
Gautam Kamath
Or Sheffet
Vikrant Singhal
Jonathan R. Ullman
FedML
61
48
0
09 Sep 2019
Neural Spline Flows
Neural Spline Flows
Conor Durkan
Artur Bekasov
Iain Murray
George Papamakarios
DRL
178
775
0
10 Jun 2019
A General Approach to Adding Differential Privacy to Iterative Training
  Procedures
A General Approach to Adding Differential Privacy to Iterative Training Procedures
H. B. McMahan
Galen Andrew
Ulfar Erlingsson
Steve Chien
Ilya Mironov
Nicolas Papernot
Peter Kairouz
67
193
0
15 Dec 2018
Private Selection from Private Candidates
Private Selection from Private Candidates
Jingcheng Liu
Kunal Talwar
61
132
0
19 Nov 2018
FFJORD: Free-form Continuous Dynamics for Scalable Reversible Generative
  Models
FFJORD: Free-form Continuous Dynamics for Scalable Reversible Generative Models
Will Grathwohl
Ricky T. Q. Chen
J. Bettencourt
Ilya Sutskever
David Duvenaud
DRL
150
873
0
02 Oct 2018
Subsampled Rényi Differential Privacy and Analytical Moments
  Accountant
Subsampled Rényi Differential Privacy and Analytical Moments Accountant
Yu Wang
Borja Balle
S. Kasiviswanathan
85
398
0
31 Jul 2018
Glow: Generative Flow with Invertible 1x1 Convolutions
Glow: Generative Flow with Invertible 1x1 Convolutions
Diederik P. Kingma
Prafulla Dhariwal
BDLDRL
295
3,134
0
09 Jul 2018
Neural Autoregressive Flows
Neural Autoregressive Flows
Chin-Wei Huang
David M. Krueger
Alexandre Lacoste
Aaron Courville
DRLAI4CE
146
442
0
03 Apr 2018
Transformation Autoregressive Networks
Transformation Autoregressive Networks
Junier B. Oliva
Kumar Avinava Dubey
Manzil Zaheer
Barnabás Póczós
Ruslan Salakhutdinov
Eric Xing
J. Schneider
OOD
63
86
0
30 Jan 2018
Masked Autoregressive Flow for Density Estimation
Masked Autoregressive Flow for Density Estimation
George Papamakarios
Theo Pavlakou
Iain Murray
210
1,354
0
19 May 2017
Renyi Differential Privacy
Renyi Differential Privacy
Ilya Mironov
77
1,259
0
24 Feb 2017
Deep Learning with Differential Privacy
Deep Learning with Differential Privacy
Martín Abadi
Andy Chu
Ian Goodfellow
H. B. McMahan
Ilya Mironov
Kunal Talwar
Li Zhang
FedMLSyDa
213
6,130
0
01 Jul 2016
Improving Variational Inference with Inverse Autoregressive Flow
Improving Variational Inference with Inverse Autoregressive Flow
Diederik P. Kingma
Tim Salimans
Rafal Jozefowicz
Xi Chen
Ilya Sutskever
Max Welling
BDLDRL
139
1,820
0
15 Jun 2016
Faster Eigenvector Computation via Shift-and-Invert Preconditioning
Faster Eigenvector Computation via Shift-and-Invert Preconditioning
Dan Garber
Laurent Dinh
Chi Jin
Jascha Narain Sohl-Dickstein
Samy Bengio
Praneeth Netrapalli
Aaron Sidford
266
3,702
0
26 May 2016
Concentrated Differential Privacy: Simplifications, Extensions, and
  Lower Bounds
Concentrated Differential Privacy: Simplifications, Extensions, and Lower Bounds
Mark Bun
Thomas Steinke
84
835
0
06 May 2016
Weight Normalization: A Simple Reparameterization to Accelerate Training
  of Deep Neural Networks
Weight Normalization: A Simple Reparameterization to Accelerate Training of Deep Neural Networks
Tim Salimans
Diederik P. Kingma
ODL
194
1,942
0
25 Feb 2016
Differentially Private Analysis of Outliers
Differentially Private Analysis of Outliers
Rina Okada
Kazuto Fukuchi
Kazuya Kakizaki
Jun Sakuma
36
23
0
24 Jul 2015
MADE: Masked Autoencoder for Distribution Estimation
MADE: Masked Autoencoder for Distribution Estimation
M. Germain
Karol Gregor
Iain Murray
Hugo Larochelle
OODSyDaUQCV
172
868
0
12 Feb 2015
Batch Normalization: Accelerating Deep Network Training by Reducing
  Internal Covariate Shift
Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift
Sergey Ioffe
Christian Szegedy
OOD
463
43,305
0
11 Feb 2015
Delving Deep into Rectifiers: Surpassing Human-Level Performance on
  ImageNet Classification
Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification
Kaiming He
Xinming Zhang
Shaoqing Ren
Jian Sun
VLM
326
18,625
0
06 Feb 2015
Adam: A Method for Stochastic Optimization
Adam: A Method for Stochastic Optimization
Diederik P. Kingma
Jimmy Ba
ODL
1.9K
150,115
0
22 Dec 2014
NICE: Non-linear Independent Components Estimation
NICE: Non-linear Independent Components Estimation
Laurent Dinh
David M. Krueger
Yoshua Bengio
DRLBDL
126
2,261
0
30 Oct 2014
Differential Privacy for Functions and Functional Data
Differential Privacy for Functions and Functional Data
Rob Hall
Alessandro Rinaldo
Larry A. Wasserman
84
183
0
12 Mar 2012
Differentially Private Combinatorial Optimization
Differentially Private Combinatorial Optimization
Anupam Gupta
Katrina Ligett
Frank McSherry
Aaron Roth
Kunal Talwar
72
231
0
26 Mar 2009
1