ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2103.05045
  4. Cited By
Size-Invariant Graph Representations for Graph Classification
  Extrapolations

Size-Invariant Graph Representations for Graph Classification Extrapolations

8 March 2021
Beatrice Bevilacqua
Yangze Zhou
Bruno Ribeiro
    OOD
ArXivPDFHTML

Papers citing "Size-Invariant Graph Representations for Graph Classification Extrapolations"

50 / 85 papers shown
Title
A Survey of Deep Graph Learning under Distribution Shifts: from Graph Out-of-Distribution Generalization to Adaptation
A Survey of Deep Graph Learning under Distribution Shifts: from Graph Out-of-Distribution Generalization to Adaptation
Kexin Zhang
Shuhan Liu
Song Wang
Weili Shi
Chen Chen
Pan Li
Sheng Li
Jundong Li
Kaize Ding
OOD
81
3
0
25 Oct 2024
Neural Networks for Learning Counterfactual G-Invariances from Single
  Environments
Neural Networks for Learning Counterfactual G-Invariances from Single Environments
S Chandra Mouli
Bruno Ribeiro
OOD
37
12
0
20 Apr 2021
On the Equivalence Between Temporal and Static Graph Representations for
  Observational Predictions
On the Equivalence Between Temporal and Static Graph Representations for Observational Predictions
Jianfei Gao
Bruno Ribeiro
44
11
0
12 Mar 2021
Walking Out of the Weisfeiler Leman Hierarchy: Graph Learning Beyond
  Message Passing
Walking Out of the Weisfeiler Leman Hierarchy: Graph Learning Beyond Message Passing
Jan Toenshoff
Martin Ritzert
Hinrikus Wolf
Martin Grohe
GNN
97
32
0
17 Feb 2021
WILDS: A Benchmark of in-the-Wild Distribution Shifts
WILDS: A Benchmark of in-the-Wild Distribution Shifts
Pang Wei Koh
Shiori Sagawa
Henrik Marklund
Sang Michael Xie
Marvin Zhang
...
A. Kundaje
Emma Pierson
Sergey Levine
Chelsea Finn
Percy Liang
OOD
128
1,406
0
14 Dec 2020
Underspecification Presents Challenges for Credibility in Modern Machine
  Learning
Underspecification Presents Challenges for Credibility in Modern Machine Learning
Alexander DÁmour
Katherine A. Heller
D. Moldovan
Ben Adlam
B. Alipanahi
...
Kellie Webster
Steve Yadlowsky
T. Yun
Xiaohua Zhai
D. Sculley
OffRL
89
681
0
06 Nov 2020
From Local Structures to Size Generalization in Graph Neural Networks
From Local Structures to Size Generalization in Graph Neural Networks
Gilad Yehudai
Ethan Fetaya
E. Meirom
Gal Chechik
Haggai Maron
GNN
AI4CE
189
128
0
17 Oct 2020
The Risks of Invariant Risk Minimization
The Risks of Invariant Risk Minimization
Elan Rosenfeld
Pradeep Ravikumar
Andrej Risteski
OOD
35
307
0
12 Oct 2020
How Neural Networks Extrapolate: From Feedforward to Graph Neural
  Networks
How Neural Networks Extrapolate: From Feedforward to Graph Neural Networks
Keyulu Xu
Mozhi Zhang
Jingling Li
S. Du
Ken-ichi Kawarabayashi
Stefanie Jegelka
MLT
61
310
0
24 Sep 2020
GraphCrop: Subgraph Cropping for Graph Classification
GraphCrop: Subgraph Cropping for Graph Classification
Yiwei Wang
Wei Wang
Yuxuan Liang
Yujun Cai
Bryan Hooi
34
57
0
22 Sep 2020
Representation Learning of Graphs Using Graph Convolutional Multilayer
  Networks Based on Motifs
Representation Learning of Graphs Using Graph Convolutional Multilayer Networks Based on Motifs
Xing Li
Wei Wei
Xiangnan Feng
Xue Liu
Zhiming Zheng
GNN
17
12
0
31 Jul 2020
TUDataset: A collection of benchmark datasets for learning with graphs
TUDataset: A collection of benchmark datasets for learning with graphs
Christopher Morris
Nils M. Kriege
Franka Bause
Kristian Kersting
Petra Mutzel
Marion Neumann
111
802
0
16 Jul 2020
Estimating Generalization under Distribution Shifts via Domain-Invariant
  Representations
Estimating Generalization under Distribution Shifts via Domain-Invariant Representations
Ching-Yao Chuang
Antonio Torralba
Stefanie Jegelka
OOD
13
62
0
06 Jul 2020
Causal Feature Selection via Orthogonal Search
Causal Feature Selection via Orthogonal Search
Ashkan Soleymani
Anant Raj
Stefan Bauer
Bernhard Schölkopf
M. Besserve
CML
44
17
0
06 Jul 2020
Building powerful and equivariant graph neural networks with structural
  message-passing
Building powerful and equivariant graph neural networks with structural message-passing
Clément Vignac
Andreas Loukas
P. Frossard
37
119
0
26 Jun 2020
Improving Graph Neural Network Expressivity via Subgraph Isomorphism
  Counting
Improving Graph Neural Network Expressivity via Subgraph Isomorphism Counting
Giorgos Bouritsas
Fabrizio Frasca
Stefanos Zafeiriou
M. Bronstein
78
428
0
16 Jun 2020
Machine Learning on Graphs: A Model and Comprehensive Taxonomy
Machine Learning on Graphs: A Model and Comprehensive Taxonomy
Ines Chami
Sami Abu-El-Haija
Bryan Perozzi
Christopher Ré
Kevin Patrick Murphy
62
288
0
07 May 2020
Open Graph Benchmark: Datasets for Machine Learning on Graphs
Open Graph Benchmark: Datasets for Machine Learning on Graphs
Weihua Hu
Matthias Fey
Marinka Zitnik
Yuxiao Dong
Hongyu Ren
Bowen Liu
Michele Catasta
J. Leskovec
147
2,687
0
02 May 2020
Shortcut Learning in Deep Neural Networks
Shortcut Learning in Deep Neural Networks
Robert Geirhos
J. Jacobsen
Claudio Michaelis
R. Zemel
Wieland Brendel
Matthias Bethge
Felix Wichmann
126
2,023
0
16 Apr 2020
Principal Neighbourhood Aggregation for Graph Nets
Principal Neighbourhood Aggregation for Graph Nets
Gabriele Corso
Luca Cavalleri
Dominique Beaini
Pietro Lio
Petar Velickovic
GNN
43
659
0
12 Apr 2020
A Survey on The Expressive Power of Graph Neural Networks
A Survey on The Expressive Power of Graph Neural Networks
Ryoma Sato
240
172
0
09 Mar 2020
Directional Message Passing for Molecular Graphs
Directional Message Passing for Molecular Graphs
Johannes Klicpera
Janek Groß
Stephan Günnemann
91
861
0
06 Mar 2020
Out-of-Distribution Generalization via Risk Extrapolation (REx)
Out-of-Distribution Generalization via Risk Extrapolation (REx)
David M. Krueger
Ethan Caballero
J. Jacobsen
Amy Zhang
Jonathan Binas
Dinghuai Zhang
Rémi Le Priol
Aaron Courville
OOD
277
921
0
02 Mar 2020
Generalization and Representational Limits of Graph Neural Networks
Generalization and Representational Limits of Graph Neural Networks
Vikas Garg
Stefanie Jegelka
Tommi Jaakkola
GNN
57
309
0
14 Feb 2020
Can Graph Neural Networks Count Substructures?
Can Graph Neural Networks Count Substructures?
Zhengdao Chen
Lei Chen
Soledad Villar
Joan Bruna
GNN
92
323
0
10 Feb 2020
PyTorch: An Imperative Style, High-Performance Deep Learning Library
PyTorch: An Imperative Style, High-Performance Deep Learning Library
Adam Paszke
Sam Gross
Francisco Massa
Adam Lerer
James Bradbury
...
Sasank Chilamkurthy
Benoit Steiner
Lu Fang
Junjie Bai
Soumith Chintala
ODL
106
42,038
0
03 Dec 2019
Deep Learning for Symbolic Mathematics
Deep Learning for Symbolic Mathematics
Guillaume Lample
François Charton
3DGS
48
406
0
02 Dec 2019
Causality for Machine Learning
Causality for Machine Learning
Bernhard Schölkopf
CML
AI4CE
LRM
55
455
0
24 Nov 2019
Inductive Relation Prediction by Subgraph Reasoning
Inductive Relation Prediction by Subgraph Reasoning
Komal K. Teru
E. Denis
William L. Hamilton
NAI
AI4CE
51
390
0
16 Nov 2019
Hyperbolic Graph Convolutional Neural Networks
Hyperbolic Graph Convolutional Neural Networks
Ines Chami
Rex Ying
Christopher Ré
J. Leskovec
GNN
56
637
0
28 Oct 2019
Hyperbolic Graph Neural Networks
Hyperbolic Graph Neural Networks
Qi Liu
Maximilian Nickel
Douwe Kiela
AI4CE
GNN
47
377
0
28 Oct 2019
Neural Execution of Graph Algorithms
Neural Execution of Graph Algorithms
Petar Velickovic
Rex Ying
Matilde Padovano
R. Hadsell
Charles Blundell
GNN
53
166
0
23 Oct 2019
Predicting Dynamic Embedding Trajectory in Temporal Interaction Networks
Predicting Dynamic Embedding Trajectory in Temporal Interaction Networks
Srijan Kumar
Xikun Zhang
J. Leskovec
AI4TS
26
724
0
03 Aug 2019
Invariant Risk Minimization
Invariant Risk Minimization
Martín Arjovsky
Léon Bottou
Ishaan Gulrajani
David Lopez-Paz
OOD
135
2,190
0
05 Jul 2019
Position-aware Graph Neural Networks
Position-aware Graph Neural Networks
Jiaxuan You
Rex Ying
J. Leskovec
64
492
0
11 Jun 2019
Representation Learning for Dynamic Graphs: A Survey
Representation Learning for Dynamic Graphs: A Survey
Seyed Mehran Kazemi
Rishab Goel
Kshitij Jain
I. Kobyzev
Akshay Sethi
Peter Forsyth
Pascal Poupart
AI4TS
AI4CE
GNN
68
450
0
27 May 2019
Provably Powerful Graph Networks
Provably Powerful Graph Networks
Haggai Maron
Heli Ben-Hamu
Hadar Serviansky
Y. Lipman
48
575
0
27 May 2019
Analysing Mathematical Reasoning Abilities of Neural Models
Analysing Mathematical Reasoning Abilities of Neural Models
D. Saxton
Edward Grefenstette
Felix Hill
Pushmeet Kohli
LRM
88
420
0
02 Apr 2019
A Survey on Graph Kernels
A Survey on Graph Kernels
Nils M. Kriege
Fredrik D. Johansson
Christopher Morris
100
416
0
28 Mar 2019
Relational Pooling for Graph Representations
Relational Pooling for Graph Representations
R. Murphy
Balasubramaniam Srinivasan
Vinayak A. Rao
Bruno Ribeiro
GNN
55
259
0
06 Mar 2019
Fast Graph Representation Learning with PyTorch Geometric
Fast Graph Representation Learning with PyTorch Geometric
Matthias Fey
J. E. Lenssen
3DH
GNN
3DPC
128
4,289
0
06 Mar 2019
Link Prediction via Higher-Order Motif Features
Link Prediction via Higher-Order Motif Features
Ghadeer Abuoda
G. D. F. Morales
Ashraf Aboulnaga
32
37
0
08 Feb 2019
A Meta-Transfer Objective for Learning to Disentangle Causal Mechanisms
A Meta-Transfer Objective for Learning to Disentangle Causal Mechanisms
Yoshua Bengio
T. Deleu
Nasim Rahaman
Nan Rosemary Ke
Sébastien Lachapelle
O. Bilaniuk
Anirudh Goyal
C. Pal
CML
OOD
74
334
0
30 Jan 2019
Heterogeneous Network Motifs
Heterogeneous Network Motifs
Ryan A. Rossi
Nesreen Ahmed
Aldo G. Carranza
David Arbour
Anup B. Rao
Sungchul Kim
Eunyee Koh
36
23
0
28 Jan 2019
A Comprehensive Survey on Graph Neural Networks
A Comprehensive Survey on Graph Neural Networks
Zonghan Wu
Shirui Pan
Fengwen Chen
Guodong Long
Chengqi Zhang
Philip S. Yu
FaML
GNN
AI4TS
AI4CE
249
8,441
0
03 Jan 2019
Invariant and Equivariant Graph Networks
Invariant and Equivariant Graph Networks
Haggai Maron
Heli Ben-Hamu
Nadav Shamir
Y. Lipman
48
498
0
24 Dec 2018
Deep Learning on Graphs: A Survey
Deep Learning on Graphs: A Survey
Ziwei Zhang
Peng Cui
Wenwu Zhu
GNN
127
1,324
0
11 Dec 2018
Challenging Common Assumptions in the Unsupervised Learning of
  Disentangled Representations
Challenging Common Assumptions in the Unsupervised Learning of Disentangled Representations
Francesco Locatello
Stefan Bauer
Mario Lucic
Gunnar Rätsch
Sylvain Gelly
Bernhard Schölkopf
Olivier Bachem
OOD
80
1,451
0
29 Nov 2018
Weisfeiler and Leman Go Neural: Higher-order Graph Neural Networks
Weisfeiler and Leman Go Neural: Higher-order Graph Neural Networks
Christopher Morris
Martin Ritzert
Matthias Fey
William L. Hamilton
J. E. Lenssen
Gaurav Rattan
Martin Grohe
GNN
114
1,625
0
04 Oct 2018
How Powerful are Graph Neural Networks?
How Powerful are Graph Neural Networks?
Keyulu Xu
Weihua Hu
J. Leskovec
Stefanie Jegelka
GNN
115
7,554
0
01 Oct 2018
12
Next