ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1901.10026
29
23

Heterogeneous Network Motifs

28 January 2019
Ryan A. Rossi
Nesreen Ahmed
Aldo G. Carranza
David Arbour
Anup B. Rao
Sungchul Kim
Eunyee Koh
ArXivPDFHTML
Abstract

Many real-world applications give rise to large heterogeneous networks where nodes and edges can be of any arbitrary type (e.g., user, web page, location). Special cases of such heterogeneous graphs include homogeneous graphs, bipartite, k-partite, signed, labeled graphs, among many others. In this work, we generalize the notion of network motifs to heterogeneous networks. In particular, small induced typed subgraphs called typed graphlets (heterogeneous network motifs) are introduced and shown to be the fundamental building blocks of complex heterogeneous networks. Typed graphlets are a powerful generalization of the notion of graphlet (network motif) to heterogeneous networks as they capture both the induced subgraph of interest and the types associated with the nodes in the induced subgraph. To address this problem, we propose a fast, parallel, and space-efficient framework for counting typed graphlets in large networks. We discover the existence of non-trivial combinatorial relationships between lower-order (k−1k-1k−1)-node typed graphlets and leverage them for deriving many of the kkk-node typed graphlets in o(1)o(1)o(1) constant time. Thus, we avoid explicit enumeration of those typed graphlets. Notably, the time complexity matches the best untyped graphlet counting algorithm. The experiments demonstrate the effectiveness of the proposed framework in terms of runtime, space-efficiency, parallel speedup, and scalability as it is able to handle large-scale networks.

View on arXiv
Comments on this paper