ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2103.03212
  4. Cited By
Weisfeiler and Lehman Go Topological: Message Passing Simplicial
  Networks

Weisfeiler and Lehman Go Topological: Message Passing Simplicial Networks

4 March 2021
Cristian Bodnar
Fabrizio Frasca
Yu Guang Wang
N. Otter
Guido Montúfar
Pietro Lió
M. Bronstein
ArXivPDFHTML

Papers citing "Weisfeiler and Lehman Go Topological: Message Passing Simplicial Networks"

50 / 159 papers shown
Title
Hodge-Aware Contrastive Learning
Hodge-Aware Contrastive Learning
Alexander Mollers
Alexander Immer
Vincent Fortuin
Elvin Isufi
35
1
0
14 Sep 2023
Generalized Simplicial Attention Neural Networks
Generalized Simplicial Attention Neural Networks
Claudio Battiloro
Lucia Testa
Lorenzo Giusti
S. Sardellitti
P. Lorenzo
Sergio Barbarossa
25
18
0
05 Sep 2023
Enhancing Graph Transformers with Hierarchical Distance Structural
  Encoding
Enhancing Graph Transformers with Hierarchical Distance Structural Encoding
Yuan Luo
Hongkang Li
Lei Shi
Xiao-Ming Wu
28
7
0
22 Aug 2023
Topological Graph Signal Compression
Topological Graph Signal Compression
Guillermo Bernárdez
Lev Telyatnikov
Eduard Alarcón
A. Cabellos-Aparicio
Pere Barlet-Ros
Pietro Lio'
AI4CE
24
0
0
21 Aug 2023
The Expressive Power of Graph Neural Networks: A Survey
The Expressive Power of Graph Neural Networks: A Survey
Bingxue Zhang
Changjun Fan
Shixuan Liu
Kuihua Huang
Xiang Zhao
Jin-Yu Huang
Zhong Liu
40
19
0
16 Aug 2023
Weisfeiler and Lehman Go Paths: Learning Topological Features via Path
  Complexes
Weisfeiler and Lehman Go Paths: Learning Topological Features via Path Complexes
Quang Truong
Peter Chin
GNN
27
7
0
13 Aug 2023
XFlow: Benchmarking Flow Behaviors over Graphs
XFlow: Benchmarking Flow Behaviors over Graphs
Zijian Zhang
Zonghan Zhang
Zhiqian Chen
38
0
0
07 Aug 2023
Influential Simplices Mining via Simplicial Convolutional Network
Influential Simplices Mining via Simplicial Convolutional Network
Yujie Zeng
Yiming Huang
Qiang Wu
Linyuan Lu
21
10
0
11 Jul 2023
Generalization Limits of Graph Neural Networks in Identity Effects
  Learning
Generalization Limits of Graph Neural Networks in Identity Effects Learning
Giuseppe Alessio D’Inverno
Simone Brugiapaglia
Mirco Ravanelli
18
3
0
30 Jun 2023
Path Neural Networks: Expressive and Accurate Graph Neural Networks
Path Neural Networks: Expressive and Accurate Graph Neural Networks
Gaspard Michel
Giannis Nikolentzos
J. Lutzeyer
Michalis Vazirgiannis
GNN
18
26
0
09 Jun 2023
Simplicial Message Passing for Chemical Property Prediction
Simplicial Message Passing for Chemical Property Prediction
Hai Lan
Xian Wei
25
0
0
09 Jun 2023
CIN++: Enhancing Topological Message Passing
CIN++: Enhancing Topological Message Passing
Lorenzo Giusti
Teodora Reu
Francesco Ceccarelli
Cristian Bodnar
Pietro Lio'
GNN
32
7
0
06 Jun 2023
Graph Inductive Biases in Transformers without Message Passing
Graph Inductive Biases in Transformers without Message Passing
Liheng Ma
Chen Lin
Derek Lim
Adriana Romero Soriano
P. Dokania
Mark J. Coates
Philip H. S. Torr
Ser-Nam Lim
AI4CE
31
85
0
27 May 2023
From Latent Graph to Latent Topology Inference: Differentiable Cell
  Complex Module
From Latent Graph to Latent Topology Inference: Differentiable Cell Complex Module
Claudio Battiloro
Indro Spinelli
Lev Telyatnikov
Michael M. Bronstein
Simone Scardapane
P. Lorenzo
BDL
21
14
0
25 May 2023
Union Subgraph Neural Networks
Union Subgraph Neural Networks
Jiaxing Xu
Aihu Zhang
Qingtian Bian
Vijay Prakash Dwivedi
Yiping Ke
GNN
27
6
0
25 May 2023
Edge Directionality Improves Learning on Heterophilic Graphs
Edge Directionality Improves Learning on Heterophilic Graphs
Emanuele Rossi
Bertrand Charpentier
Francesco Di Giovanni
Fabrizio Frasca
Stephan Günnemann
Michael M. Bronstein
22
56
0
17 May 2023
E(n) Equivariant Message Passing Simplicial Networks
E(n) Equivariant Message Passing Simplicial Networks
Floor Eijkelboom
Rob D. Hesselink
Erik J. Bekkers
22
14
0
11 May 2023
NervePool: A Simplicial Pooling Layer
NervePool: A Simplicial Pooling Layer
Sarah McGuire
E. Munch
M. Hirn
33
1
0
10 May 2023
Zoo Guide to Network Embedding
Zoo Guide to Network Embedding
Anthony Baptista
Rubén J. Sánchez-García
A. Baudot
Ginestra Bianconi
GNN
13
6
0
05 May 2023
Leveraging Label Non-Uniformity for Node Classification in Graph Neural
  Networks
Leveraging Label Non-Uniformity for Node Classification in Graph Neural Networks
Feng Ji
See Hian Lee
Hanyang Meng
Kai Zhao
Jielong Yang
Wee Peng Tay
47
12
0
29 Apr 2023
Self-Attention in Colors: Another Take on Encoding Graph Structure in
  Transformers
Self-Attention in Colors: Another Take on Encoding Graph Structure in Transformers
Romain Menegaux
Emmanuel Jehanno
Margot Selosse
Julien Mairal
23
6
0
21 Apr 2023
What Do GNNs Actually Learn? Towards Understanding their Representations
What Do GNNs Actually Learn? Towards Understanding their Representations
Giannis Nikolentzos
Michail Chatzianastasis
Michalis Vazirgiannis
GNN
AI4CE
15
0
0
21 Apr 2023
Architectures of Topological Deep Learning: A Survey of Message-Passing
  Topological Neural Networks
Architectures of Topological Deep Learning: A Survey of Message-Passing Topological Neural Networks
Mathilde Papillon
Sophia Sanborn
Mustafa Hajij
Nina Miolane
3DV
AI4CE
30
33
0
20 Apr 2023
Topological Point Cloud Clustering
Topological Point Cloud Clustering
Vincent P. Grande
Michael T. Schaub
3DPC
21
7
0
29 Mar 2023
Topological Pooling on Graphs
Topological Pooling on Graphs
Yuzhou Chen
Yulia R. Gel
25
10
0
25 Mar 2023
Tangent Bundle Convolutional Learning: from Manifolds to Cellular
  Sheaves and Back
Tangent Bundle Convolutional Learning: from Manifolds to Cellular Sheaves and Back
Claudio Battiloro
Zhiyang Wang
Hans Riess
P. Di Lorenzo
Alejandro Ribeiro
33
9
0
20 Mar 2023
Skeleton Regression: A Graph-Based Approach to Estimation with Manifold
  Structure
Skeleton Regression: A Graph-Based Approach to Estimation with Manifold Structure
Zeyu Wei
Yen-Chi Chen
32
0
0
19 Mar 2023
An Efficient Subgraph GNN with Provable Substructure Counting Power
An Efficient Subgraph GNN with Provable Substructure Counting Power
Zuoyu Yan
Junru Zhou
Liangcai Gao
Zhi Tang
Muhan Zhang
GNN
29
12
0
19 Mar 2023
Framelet Message Passing
Framelet Message Passing
Xinliang Liu
Bingxin Zhou
Chutian Zhang
Yu Guang Wang
28
5
0
28 Feb 2023
Equivariant Polynomials for Graph Neural Networks
Equivariant Polynomials for Graph Neural Networks
Omri Puny
Derek Lim
B. Kiani
Haggai Maron
Y. Lipman
28
31
0
22 Feb 2023
On the Expressivity of Persistent Homology in Graph Learning
On the Expressivity of Persistent Homology in Graph Learning
Bastian Alexander Rieck
Bastian Rieck
19
13
0
20 Feb 2023
Is Distance Matrix Enough for Geometric Deep Learning?
Is Distance Matrix Enough for Geometric Deep Learning?
Zian Li
Xiyuan Wang
Yinan Huang
Muhan Zhang
37
17
0
11 Feb 2023
On Over-Squashing in Message Passing Neural Networks: The Impact of
  Width, Depth, and Topology
On Over-Squashing in Message Passing Neural Networks: The Impact of Width, Depth, and Topology
Francesco Di Giovanni
Lorenzo Giusti
Federico Barbero
Giulia Luise
Pietro Lio'
Michael M. Bronstein
42
112
0
06 Feb 2023
Curvature Filtrations for Graph Generative Model Evaluation
Curvature Filtrations for Graph Generative Model Evaluation
Joshua Southern
Jeremy Wayland
Michael M. Bronstein
Bastian Alexander Rieck
23
14
0
30 Jan 2023
Convolutional Learning on Simplicial Complexes
Convolutional Learning on Simplicial Complexes
Maosheng Yang
Elvin Isufi
21
19
0
26 Jan 2023
WL meet VC
WL meet VC
Christopher Morris
Floris Geerts
Jan Tonshoff
Martin Grohe
38
27
0
26 Jan 2023
On the Expressive Power of Geometric Graph Neural Networks
On the Expressive Power of Geometric Graph Neural Networks
Chaitanya K. Joshi
Cristian Bodnar
Simon V. Mathis
Taco Cohen
Pietro Liò
55
83
0
23 Jan 2023
State of the Art and Potentialities of Graph-level Learning
State of the Art and Potentialities of Graph-level Learning
Zhenyu Yang
Ge Zhang
Jia Wu
Jian Yang
Quan.Z Sheng
...
Charu C. Aggarwal
Hao Peng
Wenbin Hu
Edwin R. Hancock
Pietro Lio'
GNN
AI4CE
35
10
0
14 Jan 2023
Dirac signal processing of higher-order topological signals
Dirac signal processing of higher-order topological signals
Lucille Calmon
Michael T. Schaub
G. Bianconi
19
27
0
12 Jan 2023
t-SMILES: A Scalable Fragment-based Molecular Representation Framework
  for De Novo Molecule Generation
t-SMILES: A Scalable Fragment-based Molecular Representation Framework for De Novo Molecule Generation
Juan-Ni Wu
Tong Wang
Yue (Eleanor) Chen
Li-Juan Tang
Hai-Long Wu
Ru-Qin Yu
21
0
0
04 Jan 2023
A Topological Deep Learning Framework for Neural Spike Decoding
A Topological Deep Learning Framework for Neural Spike Decoding
Edward C. Mitchell
Brittany Story
D. Boothe
P. Franaszczuk
Vasileios Maroulas
31
8
0
01 Dec 2022
Graph Convolutional Neural Networks as Parametric CoKleisli morphisms
Graph Convolutional Neural Networks as Parametric CoKleisli morphisms
Bruno Gavranović
M. Villani
GNN
84
0
0
01 Dec 2022
Stable and Transferable Hyper-Graph Neural Networks
Stable and Transferable Hyper-Graph Neural Networks
Mikhail Hayhoe
Hans Riess
V. Preciado
Alejandro Ribeiro
46
1
0
11 Nov 2022
Towards Better Out-of-Distribution Generalization of Neural Algorithmic
  Reasoning Tasks
Towards Better Out-of-Distribution Generalization of Neural Algorithmic Reasoning Tasks
Sadegh Mahdavi
Kevin Swersky
Thomas Kipf
Milad Hashemi
Christos Thrampoulidis
Renjie Liao
LRM
OOD
NAI
45
25
0
01 Nov 2022
Improving Graph Neural Networks with Learnable Propagation Operators
Improving Graph Neural Networks with Learnable Propagation Operators
Moshe Eliasof
Lars Ruthotto
Eran Treister
34
20
0
31 Oct 2022
Tangent Bundle Filters and Neural Networks: from Manifolds to Cellular
  Sheaves and Back
Tangent Bundle Filters and Neural Networks: from Manifolds to Cellular Sheaves and Back
Claudio Battiloro
Zhiyang Wang
Hans Riess
P. Lorenzo
Alejandro Ribeiro
34
13
0
26 Oct 2022
Pooling Strategies for Simplicial Convolutional Networks
Pooling Strategies for Simplicial Convolutional Networks
Domenico Mattia Cinque
Claudio Battiloro
P. Lorenzo
30
5
0
11 Oct 2022
Weisfeiler-Lehman goes Dynamic: An Analysis of the Expressive Power of
  Graph Neural Networks for Attributed and Dynamic Graphs
Weisfeiler-Lehman goes Dynamic: An Analysis of the Expressive Power of Graph Neural Networks for Attributed and Dynamic Graphs
Silvia Beddar-Wiesing
Giuseppe Alessio D’Inverno
C. Graziani
Veronica Lachi
Alice Moallemy-Oureh
F. Scarselli
J. M. Thomas
31
9
0
08 Oct 2022
Expander Graph Propagation
Expander Graph Propagation
Andreea Deac
Marc Lackenby
Petar Velivcković
96
52
0
06 Oct 2022
Enumeration of max-pooling responses with generalized permutohedra
Enumeration of max-pooling responses with generalized permutohedra
Laura Escobar
Patricio Gallardo
Javier González-Anaya
J. L. González
Guido Montúfar
A. Morales
14
1
0
29 Sep 2022
Previous
1234
Next