Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2103.03212
Cited By
Weisfeiler and Lehman Go Topological: Message Passing Simplicial Networks
4 March 2021
Cristian Bodnar
Fabrizio Frasca
Yu Guang Wang
N. Otter
Guido Montúfar
Pietro Lió
M. Bronstein
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Weisfeiler and Lehman Go Topological: Message Passing Simplicial Networks"
9 / 159 papers shown
Title
Topological Graph Neural Networks
Max Horn
E. Brouwer
Michael Moor
Yves Moreau
Bastian Alexander Rieck
Karsten M. Borgwardt
AI4CE
25
90
0
15 Feb 2021
How Framelets Enhance Graph Neural Networks
Xuebin Zheng
Bingxin Zhou
Junbin Gao
Yu Guang Wang
Pietro Lió
Ming Li
Guido Montúfar
56
69
0
13 Feb 2021
Signal Processing on Higher-Order Networks: Livin' on the Edge ... and Beyond
Michael T. Schaub
Yu Zhu
Jean-Baptiste Seby
T. Roddenberry
Santiago Segarra
126
145
0
14 Jan 2021
Decimated Framelet System on Graphs and Fast G-Framelet Transforms
Xuebin Zheng
Bingxin Zhou
Yu Guang Wang
Xiaosheng Zhuang
40
35
0
12 Dec 2020
DiffusionNet: Discretization Agnostic Learning on Surfaces
Nicholas Sharp
Souhaib Attaiki
Keenan Crane
M. Ovsjanikov
3DH
16
196
0
01 Dec 2020
Deep Graph Mapper: Seeing Graphs through the Neural Lens
Cristian Bodnar
Cătălina Cangea
Pietro Lió
23
42
0
10 Feb 2020
Representation Learning on Graphs with Jumping Knowledge Networks
Keyulu Xu
Chengtao Li
Yonglong Tian
Tomohiro Sonobe
Ken-ichi Kawarabayashi
Stefanie Jegelka
GNN
267
1,944
0
09 Jun 2018
Geometric deep learning: going beyond Euclidean data
M. Bronstein
Joan Bruna
Yann LeCun
Arthur Szlam
P. Vandergheynst
GNN
259
3,239
0
24 Nov 2016
Benefits of depth in neural networks
Matus Telgarsky
148
602
0
14 Feb 2016
Previous
1
2
3
4