ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2103.03212
  4. Cited By
Weisfeiler and Lehman Go Topological: Message Passing Simplicial
  Networks

Weisfeiler and Lehman Go Topological: Message Passing Simplicial Networks

4 March 2021
Cristian Bodnar
Fabrizio Frasca
Yu Guang Wang
N. Otter
Guido Montúfar
Pietro Lió
M. Bronstein
ArXivPDFHTML

Papers citing "Weisfeiler and Lehman Go Topological: Message Passing Simplicial Networks"

9 / 159 papers shown
Title
Topological Graph Neural Networks
Topological Graph Neural Networks
Max Horn
E. Brouwer
Michael Moor
Yves Moreau
Bastian Alexander Rieck
Karsten M. Borgwardt
AI4CE
25
90
0
15 Feb 2021
How Framelets Enhance Graph Neural Networks
How Framelets Enhance Graph Neural Networks
Xuebin Zheng
Bingxin Zhou
Junbin Gao
Yu Guang Wang
Pietro Lió
Ming Li
Guido Montúfar
56
69
0
13 Feb 2021
Signal Processing on Higher-Order Networks: Livin' on the Edge ... and
  Beyond
Signal Processing on Higher-Order Networks: Livin' on the Edge ... and Beyond
Michael T. Schaub
Yu Zhu
Jean-Baptiste Seby
T. Roddenberry
Santiago Segarra
126
145
0
14 Jan 2021
Decimated Framelet System on Graphs and Fast G-Framelet Transforms
Decimated Framelet System on Graphs and Fast G-Framelet Transforms
Xuebin Zheng
Bingxin Zhou
Yu Guang Wang
Xiaosheng Zhuang
40
35
0
12 Dec 2020
DiffusionNet: Discretization Agnostic Learning on Surfaces
DiffusionNet: Discretization Agnostic Learning on Surfaces
Nicholas Sharp
Souhaib Attaiki
Keenan Crane
M. Ovsjanikov
3DH
16
196
0
01 Dec 2020
Deep Graph Mapper: Seeing Graphs through the Neural Lens
Deep Graph Mapper: Seeing Graphs through the Neural Lens
Cristian Bodnar
Cătălina Cangea
Pietro Lió
23
42
0
10 Feb 2020
Representation Learning on Graphs with Jumping Knowledge Networks
Representation Learning on Graphs with Jumping Knowledge Networks
Keyulu Xu
Chengtao Li
Yonglong Tian
Tomohiro Sonobe
Ken-ichi Kawarabayashi
Stefanie Jegelka
GNN
267
1,944
0
09 Jun 2018
Geometric deep learning: going beyond Euclidean data
Geometric deep learning: going beyond Euclidean data
M. Bronstein
Joan Bruna
Yann LeCun
Arthur Szlam
P. Vandergheynst
GNN
259
3,239
0
24 Nov 2016
Benefits of depth in neural networks
Benefits of depth in neural networks
Matus Telgarsky
148
602
0
14 Feb 2016
Previous
1234