Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2102.08501
Cited By
v1
v2
v3
v4 (latest)
DEUP: Direct Epistemic Uncertainty Prediction
16 February 2021
Salem Lahlou
Moksh Jain
Hadi Nekoei
V. Butoi
Paul Bertin
Jarrid Rector-Brooks
Maksym Korablyov
Yoshua Bengio
PER
UQLM
UQCV
UD
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"DEUP: Direct Epistemic Uncertainty Prediction"
50 / 70 papers shown
Title
Contextual Similarity Distillation: Ensemble Uncertainties with a Single Model
Moritz A. Zanger
Pascal R. van der Vaart
Wendelin Bohmer
M. Spaan
UQCV
BDL
480
2
0
14 Mar 2025
Spatial-aware decision-making with ring attractors in reinforcement learning systems
Marcos Negre Saura
Richard Allmendinger
Theodore Papamarkou
Wei Pan
420
0
0
17 Feb 2025
Legitimate ground-truth-free metrics for deep uncertainty classification scoring
Arthur Pignet
Chiara Regniez
John Klein
137
1
0
30 Oct 2024
Trajectory Flow Matching with Applications to Clinical Time Series Modeling
Xi Zhang
Yuan Pu
Yuki Kawamura
Andrew Loza
Yoshua Bengio
Dennis L. Shung
Alexander Tong
OOD
AI4TS
MedIm
89
7
0
28 Oct 2024
Uncertainty quantification in fine-tuned LLMs using LoRA ensembles
Oleksandr Balabanov
Hampus Linander
UQCV
96
19
0
19 Feb 2024
Class Uncertainty: A Measure to Mitigate Class Imbalance
Z. S. Baltaci
K. Oksuz
S. Kuzucu
K. Tezoren
B. K. Konar
A. Ozkan
Emre Akbas
Sinan Kalkan
128
2
0
23 Nov 2023
Plex: Towards Reliability using Pretrained Large Model Extensions
Dustin Tran
J. Liu
Michael W. Dusenberry
Du Phan
Mark Collier
...
D. Sculley
Y. Gal
Zoubin Ghahramani
Jasper Snoek
Balaji Lakshminarayanan
VLM
108
126
0
15 Jul 2022
Excess risk analysis for epistemic uncertainty with application to variational inference
Futoshi Futami
Tomoharu Iwata
N. Ueda
Issei Sato
Masashi Sugiyama
UQCV
73
1
0
02 Jun 2022
Conformal Prediction with Temporal Quantile Adjustments
Zhen Lin
Shubhendu Trivedi
Jimeng Sun
AI4TS
105
19
0
20 May 2022
Adaptive Conformal Predictions for Time Series
Margaux Zaffran
Aymeric Dieuleveut
Olivier Féron
Y. Goude
Julie Josse
AI4TS
182
133
0
15 Feb 2022
Uncertainty estimation under model misspecification in neural network regression
Maria R. Cervera
Rafael Dätwyler
Francesco DÁngelo
Hamza Keurti
Benjamin Grewe
Christian Henning
52
6
0
23 Nov 2021
On out-of-distribution detection with Bayesian neural networks
Francesco DÁngelo
Christian Henning
BDL
UQCV
55
6
0
12 Oct 2021
A Gentle Introduction to Conformal Prediction and Distribution-Free Uncertainty Quantification
Anastasios Nikolas Angelopoulos
Stephen Bates
OOD
201
622
0
15 Jul 2021
SGD: The Role of Implicit Regularization, Batch-size and Multiple-epochs
Satyen Kale
Ayush Sekhari
Karthik Sridharan
210
29
0
11 Jul 2021
Flow Network based Generative Models for Non-Iterative Diverse Candidate Generation
Emmanuel Bengio
Moksh Jain
Maksym Korablyov
Doina Precup
Yoshua Bengio
101
331
0
08 Jun 2021
Uncertainty Baselines: Benchmarks for Uncertainty & Robustness in Deep Learning
Zachary Nado
Neil Band
Mark Collier
Josip Djolonga
Michael W. Dusenberry
...
D. Sculley
Balaji Lakshminarayanan
Jasper Snoek
Y. Gal
Dustin Tran
UQCV
ELM
83
96
0
07 Jun 2021
Deep Ensembles from a Bayesian Perspective
L. Hoffmann
Clemens Elster
UD
BDL
UQCV
50
37
0
27 May 2021
A statistical framework for efficient out of distribution detection in deep neural networks
Matan Haroush
Tzviel Frostig
R. Heller
Daniel Soudry
OODD
78
39
0
25 Feb 2021
Deep Deterministic Uncertainty: A Simple Baseline
Jishnu Mukhoti
Andreas Kirsch
Joost R. van Amersfoort
Philip Torr
Y. Gal
UD
UQCV
PER
BDL
94
154
0
23 Feb 2021
On Statistical Bias In Active Learning: How and When To Fix It
Sebastian Farquhar
Y. Gal
Tom Rainforth
TDI
HAI
42
85
0
27 Jan 2021
Minimum Excess Risk in Bayesian Learning
Aolin Xu
Maxim Raginsky
410
40
0
29 Dec 2020
Beyond Pinball Loss: Quantile Methods for Calibrated Uncertainty Quantification
Youngseog Chung
Willie Neiswanger
I. Char
J. Schneider
UQCV
166
88
0
18 Nov 2020
Uncertainty Sets for Image Classifiers using Conformal Prediction
Anastasios Nikolas Angelopoulos
Stephen Bates
Jitendra Malik
Michael I. Jordan
UQCV
205
337
0
29 Sep 2020
URSABench: Comprehensive Benchmarking of Approximate Bayesian Inference Methods for Deep Neural Networks
Meet P. Vadera
Adam D. Cobb
B. Jalaeian
Benjamin M. Marlin
BDL
UQCV
68
17
0
08 Jul 2020
Regression Prior Networks
A. Malinin
Sergey Chervontsev
Ivan Provilkov
Mark Gales
BDL
UQCV
53
38
0
20 Jun 2020
Simple and Principled Uncertainty Estimation with Deterministic Deep Learning via Distance Awareness
Jeremiah Zhe Liu
Zi Lin
Shreyas Padhy
Dustin Tran
Tania Bedrax-Weiss
Balaji Lakshminarayanan
UQCV
BDL
171
451
0
17 Jun 2020
Density of States Estimation for Out-of-Distribution Detection
Warren Morningstar
Cusuh Ham
Andrew Gallagher
Balaji Lakshminarayanan
Alexander A. Alemi
Joshua V. Dillon
OODD
79
84
0
16 Jun 2020
Posterior Network: Uncertainty Estimation without OOD Samples via Density-Based Pseudo-Counts
Bertrand Charpentier
Daniel Zügner
Stephan Günnemann
UQCV
UD
EDL
BDL
70
184
0
16 Jun 2020
Why Normalizing Flows Fail to Detect Out-of-Distribution Data
Polina Kirichenko
Pavel Izmailov
A. Wilson
OODD
93
275
0
15 Jun 2020
Depth Uncertainty in Neural Networks
Javier Antorán
J. Allingham
José Miguel Hernández-Lobato
UQCV
OOD
BDL
76
102
0
15 Jun 2020
Generalized Bayesian Posterior Expectation Distillation for Deep Neural Networks
Meet P. Vadera
B. Jalaeian
Benjamin M. Marlin
BDL
FedML
UQCV
50
20
0
16 May 2020
Efficient and Scalable Bayesian Neural Nets with Rank-1 Factors
Michael W. Dusenberry
Ghassen Jerfel
Yeming Wen
Yi-An Ma
Jasper Snoek
Katherine A. Heller
Balaji Lakshminarayanan
Dustin Tran
UQCV
BDL
57
215
0
14 May 2020
Uncertainty Estimation Using a Single Deep Deterministic Neural Network
Joost R. van Amersfoort
Lewis Smith
Yee Whye Teh
Y. Gal
UQCV
BDL
63
55
0
04 Mar 2020
BatchEnsemble: An Alternative Approach to Efficient Ensemble and Lifelong Learning
Yeming Wen
Dustin Tran
Jimmy Ba
OOD
FedML
UQCV
165
493
0
17 Feb 2020
Aleatoric and Epistemic Uncertainty with Random Forests
M. Shaker
Eyke Hüllermeier
BDL
UD
PER
57
72
0
03 Jan 2020
Aleatoric and Epistemic Uncertainty in Machine Learning: An Introduction to Concepts and Methods
Eyke Hüllermeier
Willem Waegeman
PER
UD
244
1,415
0
21 Oct 2019
Deep Evidential Regression
Alexander Amini
Wilko Schwarting
A. Soleimany
Daniela Rus
EDL
PER
BDL
UD
UQCV
81
440
0
07 Oct 2019
Scalable Global Optimization via Local Bayesian Optimization
Samyam Rajbhandari
Michael Pearce
Jacob R. Gardner
Ryan D. Turner
Matthias Poloczek
86
465
0
03 Oct 2019
Epistemic Uncertainty Sampling
Vu-Linh Nguyen
Sebastien Destercke
Eyke Hüllermeier
PER
UD
55
49
0
31 Aug 2019
Behaviour Suite for Reinforcement Learning
Ian Osband
Yotam Doron
Matteo Hessel
John Aslanides
Eren Sezener
...
Satinder Singh
Benjamin Van Roy
R. Sutton
David Silver
H. V. Hasselt
OffRL
82
183
0
09 Aug 2019
Can You Trust Your Model's Uncertainty? Evaluating Predictive Uncertainty Under Dataset Shift
Yaniv Ovadia
Emily Fertig
Jie Jessie Ren
Zachary Nado
D. Sculley
Sebastian Nowozin
Joshua V. Dillon
Balaji Lakshminarayanan
Jasper Snoek
UQCV
170
1,695
0
06 Jun 2019
Learning Loss for Active Learning
Donggeun Yoo
In So Kweon
UQCV
85
660
0
09 May 2019
Ensemble Distribution Distillation
A. Malinin
Bruno Mlodozeniec
Mark Gales
UQCV
69
236
0
30 Apr 2019
Benchmarking Neural Network Robustness to Common Corruptions and Perturbations
Dan Hendrycks
Thomas G. Dietterich
OOD
VLM
172
3,435
0
28 Mar 2019
Cyclical Stochastic Gradient MCMC for Bayesian Deep Learning
Ruqi Zhang
Chunyuan Li
Jianyi Zhang
Changyou Chen
A. Wilson
BDL
74
277
0
11 Feb 2019
A Simple Baseline for Bayesian Uncertainty in Deep Learning
Wesley J. Maddox
T. Garipov
Pavel Izmailov
Dmitry Vetrov
A. Wilson
BDL
UQCV
84
808
0
07 Feb 2019
Successor Uncertainties: Exploration and Uncertainty in Temporal Difference Learning
David Janz
Jiri Hron
Przemysław Mazur
Katja Hofmann
José Miguel Hernández-Lobato
Sebastian Tschiatschek
93
52
0
15 Oct 2018
A Tutorial on Bayesian Optimization
P. Frazier
GP
109
1,788
0
08 Jul 2018
Evidential Deep Learning to Quantify Classification Uncertainty
Murat Sensoy
Lance M. Kaplan
M. Kandemir
OOD
UQCV
EDL
BDL
182
996
0
05 Jun 2018
Averaging Weights Leads to Wider Optima and Better Generalization
Pavel Izmailov
Dmitrii Podoprikhin
T. Garipov
Dmitry Vetrov
A. Wilson
FedML
MoMe
133
1,662
0
14 Mar 2018
1
2
Next