ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2102.03877
  4. Cited By
Noise Reduction in X-ray Photon Correlation Spectroscopy with
  Convolutional Neural Networks Encoder-Decoder Models
v1v2 (latest)

Noise Reduction in X-ray Photon Correlation Spectroscopy with Convolutional Neural Networks Encoder-Decoder Models

7 February 2021
T. Konstantinova
L. Wiegart
M. Rakitin
Anthony Degennaro
A. Barbour
ArXiv (abs)PDFHTML

Papers citing "Noise Reduction in X-ray Photon Correlation Spectroscopy with Convolutional Neural Networks Encoder-Decoder Models"

10 / 10 papers shown
Title
Deep Autoencoding Models for Unsupervised Anomaly Segmentation in Brain
  MR Images
Deep Autoencoding Models for Unsupervised Anomaly Segmentation in Brain MR Images
Christoph Baur
Benedikt Wiestler
Shadi Albarqouni
Nassir Navab
UQCVMedIm
55
442
0
12 Apr 2018
Noise2Noise: Learning Image Restoration without Clean Data
Noise2Noise: Learning Image Restoration without Clean Data
J. Lehtinen
Jacob Munkberg
J. Hasselgren
S. Laine
Tero Karras
M. Aittala
Timo Aila
91
1,610
0
12 Mar 2018
Single Channel Audio Source Separation using Convolutional Denoising
  Autoencoders
Single Channel Audio Source Separation using Convolutional Denoising Autoencoders
Emad M. Grais
Mark D. Plumbley
163
108
0
23 Mar 2017
Abnormal Event Detection in Videos using Spatiotemporal Autoencoder
Abnormal Event Detection in Videos using Spatiotemporal Autoencoder
Yong Shean Chong
Yong Haur Tay
71
541
0
06 Jan 2017
A Fully Convolutional Neural Network for Speech Enhancement
A Fully Convolutional Neural Network for Speech Enhancement
Se Rim Park
Jinwon Lee
87
372
0
22 Sep 2016
Context Encoders: Feature Learning by Inpainting
Context Encoders: Feature Learning by Inpainting
Deepak Pathak
Philipp Krahenbuhl
Jeff Donahue
Trevor Darrell
Alexei A. Efros
SSL
69
5,297
0
25 Apr 2016
U-Net: Convolutional Networks for Biomedical Image Segmentation
U-Net: Convolutional Networks for Biomedical Image Segmentation
Olaf Ronneberger
Philipp Fischer
Thomas Brox
SSeg3DV
1.9K
77,378
0
18 May 2015
Adam: A Method for Stochastic Optimization
Adam: A Method for Stochastic Optimization
Diederik P. Kingma
Jimmy Ba
ODL
2.0K
150,312
0
22 Dec 2014
Very Deep Convolutional Networks for Large-Scale Image Recognition
Very Deep Convolutional Networks for Large-Scale Image Recognition
Karen Simonyan
Andrew Zisserman
FAttMDE
1.7K
100,508
0
04 Sep 2014
What Regularized Auto-Encoders Learn from the Data Generating
  Distribution
What Regularized Auto-Encoders Learn from the Data Generating Distribution
Guillaume Alain
Yoshua Bengio
OODDRL
72
505
0
18 Nov 2012
1