ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1609.07132
36
370

A Fully Convolutional Neural Network for Speech Enhancement

22 September 2016
Se Rim Park
Jinwon Lee
ArXivPDFHTML
Abstract

In hearing aids, the presence of babble noise degrades hearing intelligibility of human speech greatly. However, removing the babble without creating artifacts in human speech is a challenging task in a low SNR environment. Here, we sought to solve the problem by finding a `mapping' between noisy speech spectra and clean speech spectra via supervised learning. Specifically, we propose using fully Convolutional Neural Networks, which consist of lesser number of parameters than fully connected networks. The proposed network, Redundant Convolutional Encoder Decoder (R-CED), demonstrates that a convolutional network can be 12 times smaller than a recurrent network and yet achieves better performance, which shows its applicability for an embedded system: the hearing aids.

View on arXiv
Comments on this paper