ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2101.12465
  4. Cited By
AGSTN: Learning Attention-adjusted Graph Spatio-Temporal Networks for
  Short-term Urban Sensor Value Forecasting

AGSTN: Learning Attention-adjusted Graph Spatio-Temporal Networks for Short-term Urban Sensor Value Forecasting

29 January 2021
Yi-Ju Lu
Cheng-Te Li
    AI4TS
ArXiv (abs)PDFHTML

Papers citing "AGSTN: Learning Attention-adjusted Graph Spatio-Temporal Networks for Short-term Urban Sensor Value Forecasting"

7 / 7 papers shown
Title
Variational inference of fractional Brownian motion with linear
  computational complexity
Variational inference of fractional Brownian motion with linear computational complexity
Hippolyte Verdier
Franccois Laurent
Alhassan Cassé
Christian L. Vestergaard
Jean-Baptiste Masson
165
6
0
15 Mar 2022
A Comprehensive Survey on Graph Neural Networks
A Comprehensive Survey on Graph Neural Networks
Zonghan Wu
Shirui Pan
Fengwen Chen
Guodong Long
Chengqi Zhang
Philip S. Yu
FaMLGNNAI4TSAI4CE
778
8,533
0
03 Jan 2019
Spatio-Temporal Graph Convolutional Networks: A Deep Learning Framework
  for Traffic Forecasting
Spatio-Temporal Graph Convolutional Networks: A Deep Learning Framework for Traffic Forecasting
Ting Yu
Haoteng Yin
Zhanxing Zhu
GNNAI4TS
115
3,715
0
14 Sep 2017
Predicting Citywide Crowd Flows Using Deep Spatio-Temporal Residual
  Networks
Predicting Citywide Crowd Flows Using Deep Spatio-Temporal Residual Networks
Junbo Zhang
Yu Zheng
Dekang Qi
Ruiyuan Li
Xiuwen Yi
Tianrui Li
GNN3DPCHAIAI4TS
47
434
0
10 Jan 2017
Short-term traffic flow forecasting with spatial-temporal correlation in
  a hybrid deep learning framework
Short-term traffic flow forecasting with spatial-temporal correlation in a hybrid deep learning framework
Yuankai Wu
Huachun Tan
AI4TS
68
251
0
03 Dec 2016
Semi-Supervised Classification with Graph Convolutional Networks
Semi-Supervised Classification with Graph Convolutional Networks
Thomas Kipf
Max Welling
GNNSSL
641
29,076
0
09 Sep 2016
Sequence to Sequence Learning with Neural Networks
Sequence to Sequence Learning with Neural Networks
Ilya Sutskever
Oriol Vinyals
Quoc V. Le
AIMat
437
20,568
0
10 Sep 2014
1