Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2101.04535
Cited By
Adversary Instantiation: Lower Bounds for Differentially Private Machine Learning
11 January 2021
Milad Nasr
Shuang Song
Abhradeep Thakurta
Nicolas Papernot
Nicholas Carlini
MIACV
FedML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Adversary Instantiation: Lower Bounds for Differentially Private Machine Learning"
50 / 152 papers shown
Title
SNAP: Efficient Extraction of Private Properties with Poisoning
Harsh Chaudhari
John Abascal
Alina Oprea
Matthew Jagielski
Florian Tramèr
Jonathan R. Ullman
MIACV
39
30
0
25 Aug 2022
AlexaTM 20B: Few-Shot Learning Using a Large-Scale Multilingual Seq2Seq Model
Saleh Soltan
Shankar Ananthakrishnan
Jack G. M. FitzGerald
Rahul Gupta
Wael Hamza
...
Mukund Sridhar
Fabian Triefenbach
Apurv Verma
Gokhan Tur
Premkumar Natarajan
54
82
0
02 Aug 2022
Scaling Private Deep Learning with Low-Rank and Sparse Gradients
Ryuichi Ito
Seng Pei Liew
Tsubasa Takahashi
Yuya Sasaki
Makoto Onizuka
28
1
0
06 Jul 2022
Conflicting Interactions Among Protection Mechanisms for Machine Learning Models
S. Szyller
Nadarajah Asokan
AAML
26
7
0
05 Jul 2022
Measuring Forgetting of Memorized Training Examples
Matthew Jagielski
Om Thakkar
Florian Tramèr
Daphne Ippolito
Katherine Lee
...
Eric Wallace
Shuang Song
Abhradeep Thakurta
Nicolas Papernot
Chiyuan Zhang
TDI
66
102
0
30 Jun 2022
Measuring Lower Bounds of Local Differential Privacy via Adversary Instantiations in Federated Learning
Marin Matsumoto
Tsubasa Takahashi
Seng Pei Liew
M. Oguchi
FedML
BDL
23
0
0
18 Jun 2022
Disparate Impact in Differential Privacy from Gradient Misalignment
Maria S. Esipova
Atiyeh Ashari Ghomi
Yaqiao Luo
Jesse C. Cresswell
26
25
0
15 Jun 2022
A Survey on Gradient Inversion: Attacks, Defenses and Future Directions
Rui Zhang
Song Guo
Junxiao Wang
Xin Xie
Dacheng Tao
35
36
0
15 Jun 2022
Bayesian Estimation of Differential Privacy
Santiago Zanella Béguelin
Lukas Wutschitz
Shruti Tople
A. Salem
Victor Rühle
Andrew J. Paverd
Mohammad Naseri
Boris Köpf
Daniel Jones
19
36
0
10 Jun 2022
Individual Privacy Accounting for Differentially Private Stochastic Gradient Descent
Da Yu
Gautam Kamath
Janardhan Kulkarni
Tie-Yan Liu
Jian Yin
Huishuai Zhang
19
17
0
06 Jun 2022
Privacy for Free: How does Dataset Condensation Help Privacy?
Tian Dong
Bo Zhao
Lingjuan Lyu
DD
24
113
0
01 Jun 2022
l-Leaks: Membership Inference Attacks with Logits
Shuhao Li
Yajie Wang
Yuan-zhang Li
Yu-an Tan
MIACV
MIALM
19
2
0
13 May 2022
How to Combine Membership-Inference Attacks on Multiple Updated Models
Matthew Jagielski
Stanley Wu
Alina Oprea
Jonathan R. Ullman
Roxana Geambasu
29
10
0
12 May 2022
LPGNet: Link Private Graph Networks for Node Classification
Aashish Kolluri
Teodora Baluta
Bryan Hooi
Prateek Saxena
32
24
0
06 May 2022
Unlocking High-Accuracy Differentially Private Image Classification through Scale
Soham De
Leonard Berrada
Jamie Hayes
Samuel L. Smith
Borja Balle
35
217
0
28 Apr 2022
Optimal Membership Inference Bounds for Adaptive Composition of Sampled Gaussian Mechanisms
Saeed Mahloujifar
Alexandre Sablayrolles
Graham Cormode
S. Jha
14
22
0
12 Apr 2022
Truth Serum: Poisoning Machine Learning Models to Reveal Their Secrets
Florian Tramèr
Reza Shokri
Ayrton San Joaquin
Hoang Minh Le
Matthew Jagielski
Sanghyun Hong
Nicholas Carlini
MIACV
38
107
0
31 Mar 2022
Quantifying Privacy Risks of Masked Language Models Using Membership Inference Attacks
Fatemehsadat Mireshghallah
Kartik Goyal
Archit Uniyal
Taylor Berg-Kirkpatrick
Reza Shokri
MIALM
32
151
0
08 Mar 2022
GAP: Differentially Private Graph Neural Networks with Aggregation Perturbation
Sina Sajadmanesh
Ali Shahin Shamsabadi
A. Bellet
D. Gática-Pérez
27
63
0
02 Mar 2022
Bounding Membership Inference
Anvith Thudi
Ilia Shumailov
Franziska Boenisch
Nicolas Papernot
33
18
0
24 Feb 2022
Debugging Differential Privacy: A Case Study for Privacy Auditing
Florian Tramèr
Andreas Terzis
Thomas Steinke
Shuang Song
Matthew Jagielski
Nicholas Carlini
19
42
0
24 Feb 2022
Differentially Private Speaker Anonymization
Ali Shahin Shamsabadi
B. M. L. Srivastava
A. Bellet
Nathalie Vauquier
Emmanuel Vincent
Mohamed Maouche
Marc Tommasi
Nicolas Papernot
MIACV
46
33
0
23 Feb 2022
Individualized PATE: Differentially Private Machine Learning with Individual Privacy Guarantees
Franziska Boenisch
Christopher Muhl
Roy Rinberg
Jannis Ihrig
Adam Dziedzic
17
18
0
21 Feb 2022
Trusted AI in Multi-agent Systems: An Overview of Privacy and Security for Distributed Learning
Chuan Ma
Jun Li
Kang Wei
Bo Liu
Ming Ding
Long Yuan
Zhu Han
H. Vincent Poor
54
42
0
18 Feb 2022
Quantifying Memorization Across Neural Language Models
Nicholas Carlini
Daphne Ippolito
Matthew Jagielski
Katherine Lee
Florian Tramèr
Chiyuan Zhang
PILM
28
582
0
15 Feb 2022
What Does it Mean for a Language Model to Preserve Privacy?
Hannah Brown
Katherine Lee
Fatemehsadat Mireshghallah
Reza Shokri
Florian Tramèr
PILM
39
232
0
11 Feb 2022
Privacy-preserving Generative Framework Against Membership Inference Attacks
Ruikang Yang
Jianfeng Ma
Yinbin Miao
Xindi Ma
21
5
0
11 Feb 2022
Understanding Rare Spurious Correlations in Neural Networks
Yao-Yuan Yang
Chi-Ning Chou
Kamalika Chaudhuri
AAML
16
25
0
10 Feb 2022
Reconstructing Training Data with Informed Adversaries
Borja Balle
Giovanni Cherubin
Jamie Hayes
MIACV
AAML
43
158
0
13 Jan 2022
Submix: Practical Private Prediction for Large-Scale Language Models
Antonio A. Ginart
L. V. D. van der Maaten
James Zou
Chuan Guo
30
22
0
04 Jan 2022
Counterfactual Memorization in Neural Language Models
Chiyuan Zhang
Daphne Ippolito
Katherine Lee
Matthew Jagielski
Florian Tramèr
Nicholas Carlini
32
129
0
24 Dec 2021
Membership Inference Attacks From First Principles
Nicholas Carlini
Steve Chien
Milad Nasr
Shuang Song
Andreas Terzis
Florian Tramèr
MIACV
MIALM
29
642
0
07 Dec 2021
Decentralized Federated Learning through Proxy Model Sharing
Shivam Kalra
Junfeng Wen
Jesse C. Cresswell
M. Volkovs
Hamid R. Tizhoosh
FedML
19
92
0
22 Nov 2021
Enhanced Membership Inference Attacks against Machine Learning Models
Jiayuan Ye
Aadyaa Maddi
S. K. Murakonda
Vincent Bindschaedler
Reza Shokri
MIALM
MIACV
27
232
0
18 Nov 2021
On the Importance of Difficulty Calibration in Membership Inference Attacks
Lauren Watson
Chuan Guo
Graham Cormode
Alex Sablayrolles
28
119
0
15 Nov 2021
Mitigating Membership Inference Attacks by Self-Distillation Through a Novel Ensemble Architecture
Xinyu Tang
Saeed Mahloujifar
Liwei Song
Virat Shejwalkar
Milad Nasr
Amir Houmansadr
Prateek Mittal
19
75
0
15 Oct 2021
Generalization Techniques Empirically Outperform Differential Privacy against Membership Inference
Jiaxiang Liu
Simon Oya
Florian Kerschbaum
MIACV
22
9
0
11 Oct 2021
Can Stochastic Gradient Langevin Dynamics Provide Differential Privacy for Deep Learning?
Guy Heller
Ethan Fetaya
BDL
38
3
0
11 Oct 2021
SoK: Machine Learning Governance
Varun Chandrasekaran
Hengrui Jia
Anvith Thudi
Adelin Travers
Mohammad Yaghini
Nicolas Papernot
38
16
0
20 Sep 2021
Membership Inference Attacks Against Recommender Systems
Minxing Zhang
Z. Ren
Zihan Wang
Pengjie Ren
Zhumin Chen
Pengfei Hu
Yang Zhang
MIACV
AAML
26
83
0
16 Sep 2021
Statistical Privacy Guarantees of Machine Learning Preprocessing Techniques
Ashly Lau
Jonathan Passerat-Palmbach
22
1
0
06 Sep 2021
EncoderMI: Membership Inference against Pre-trained Encoders in Contrastive Learning
Hongbin Liu
Jinyuan Jia
Wenjie Qu
Neil Zhenqiang Gong
4
94
0
25 Aug 2021
PEARL: Data Synthesis via Private Embeddings and Adversarial Reconstruction Learning
Seng Pei Liew
Tsubasa Takahashi
Michihiko Ueno
FedML
16
29
0
08 Jun 2021
Antipodes of Label Differential Privacy: PATE and ALIBI
Mani Malek
Ilya Mironov
Karthik Prasad
I. Shilov
Florian Tramèr
16
62
0
07 Jun 2021
Membership Inference Attacks on Machine Learning: A Survey
Hongsheng Hu
Z. Salcic
Lichao Sun
Gillian Dobbie
Philip S. Yu
Xuyun Zhang
MIACV
35
412
0
14 Mar 2021
The Distributed Discrete Gaussian Mechanism for Federated Learning with Secure Aggregation
Peter Kairouz
Ziyu Liu
Thomas Steinke
FedML
44
232
0
12 Feb 2021
Differential Privacy Dynamics of Langevin Diffusion and Noisy Gradient Descent
R. Chourasia
Jiayuan Ye
Reza Shokri
FedML
22
69
0
11 Feb 2021
Quantifying and Mitigating Privacy Risks of Contrastive Learning
Xinlei He
Yang Zhang
21
51
0
08 Feb 2021
ML-Doctor: Holistic Risk Assessment of Inference Attacks Against Machine Learning Models
Yugeng Liu
Rui Wen
Xinlei He
A. Salem
Zhikun Zhang
Michael Backes
Emiliano De Cristofaro
Mario Fritz
Yang Zhang
AAML
17
125
0
04 Feb 2021
Investigating Membership Inference Attacks under Data Dependencies
Thomas Humphries
Simon Oya
Lindsey Tulloch
Matthew Rafuse
I. Goldberg
Urs Hengartner
Florian Kerschbaum
MIACV
MIALM
24
35
0
23 Oct 2020
Previous
1
2
3
4
Next