Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2101.04535
Cited By
Adversary Instantiation: Lower Bounds for Differentially Private Machine Learning
11 January 2021
Milad Nasr
Shuang Song
Abhradeep Thakurta
Nicolas Papernot
Nicholas Carlini
MIACV
FedML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Adversary Instantiation: Lower Bounds for Differentially Private Machine Learning"
50 / 152 papers shown
Title
SoK: Memorisation in machine learning
Dmitrii Usynin
Moritz Knolle
Georgios Kaissis
22
1
0
06 Nov 2023
Bounded and Unbiased Composite Differential Privacy
Kai Zhang
Yanjun Zhang
Ruoxi Sun
Pei-Wei Tsai
M. Hassan
Xingliang Yuan
Minhui Xue
Jinjun Chen
43
30
0
04 Nov 2023
Detecting Pretraining Data from Large Language Models
Weijia Shi
Anirudh Ajith
Mengzhou Xia
Yangsibo Huang
Daogao Liu
Terra Blevins
Danqi Chen
Luke Zettlemoyer
MIALM
33
164
0
25 Oct 2023
A Cautionary Tale: On the Role of Reference Data in Empirical Privacy Defenses
Caelin Kaplan
Chuan Xu
Othmane Marfoq
Giovanni Neglia
Anderson Santana de Oliveira
AAML
52
1
0
18 Oct 2023
Practical Membership Inference Attacks Against Large-Scale Multi-Modal Models: A Pilot Study
Myeongseob Ko
Ming Jin
Chenguang Wang
Ruoxi Jia
33
27
0
29 Sep 2023
Leave-one-out Distinguishability in Machine Learning
Jiayuan Ye
Anastasia Borovykh
Soufiane Hayou
Reza Shokri
39
9
0
29 Sep 2023
Differentially Private Computation of Basic Reproduction Numbers in Networked Epidemic Models
Stefan Denner
B. She
C. Hawkins
Alexander Benvenuti
Brandon Fallin
Philip E. Paré
Matthew T. Hale
72
2
0
29 Sep 2023
Recent Advances of Differential Privacy in Centralized Deep Learning: A Systematic Survey
Lea Demelius
Roman Kern
Andreas Trügler
SyDa
FedML
32
6
0
28 Sep 2023
Privacy Side Channels in Machine Learning Systems
Edoardo Debenedetti
Giorgio Severi
Nicholas Carlini
Christopher A. Choquette-Choo
Matthew Jagielski
Milad Nasr
Eric Wallace
Florian Tramèr
MIALM
45
38
0
11 Sep 2023
Revealing the True Cost of Locally Differentially Private Protocols: An Auditing Perspective
Héber H. Arcolezi
Sébastien Gambs
40
1
0
04 Sep 2023
Unlocking Accuracy and Fairness in Differentially Private Image Classification
Leonard Berrada
Soham De
J. Shen
Jamie Hayes
Robert Stanforth
David Stutz
Pushmeet Kohli
Samuel L. Smith
Borja Balle
27
13
0
21 Aug 2023
Epsilon*: Privacy Metric for Machine Learning Models
Diana M. Negoescu
H. González
Saad Eddin Al Orjany
Jilei Yang
Yuliia Lut
...
Xinyi Zheng
Zachariah Douglas
Vidita Nolkha
P. Ahammad
G. Samorodnitsky
37
2
0
21 Jul 2023
Differentially Private Statistical Inference through
β
β
β
-Divergence One Posterior Sampling
Jack Jewson
Sahra Ghalebikesabi
Chris Holmes
35
2
0
11 Jul 2023
DP-Auditorium: a Large Scale Library for Auditing Differential Privacy
William Kong
Andrés Munoz Medina
Mónica Ribero
Umar Syed
29
2
0
10 Jul 2023
SoK: Privacy-Preserving Data Synthesis
Yuzheng Hu
Fan Wu
Yue Liu
Yunhui Long
Gonzalo Munilla Garrido
Chang Ge
Bolin Ding
David A. Forsyth
Bo-wen Li
D. Song
60
25
0
05 Jul 2023
When Synthetic Data Met Regulation
Georgi Ganev
29
2
0
01 Jul 2023
Gradients Look Alike: Sensitivity is Often Overestimated in DP-SGD
Anvith Thudi
Hengrui Jia
Casey Meehan
Ilia Shumailov
Nicolas Papernot
33
3
0
01 Jul 2023
Gaussian Membership Inference Privacy
Tobias Leemann
Martin Pawelczyk
Gjergji Kasneci
25
15
0
12 Jun 2023
AnoFel: Supporting Anonymity for Privacy-Preserving Federated Learning
Ghada Almashaqbeh
Zahra Ghodsi
FedML
34
1
0
12 Jun 2023
Investigating the Effect of Misalignment on Membership Privacy in the White-box Setting
Ana-Maria Cretu
Daniel Jones
Yves-Alexandre de Montjoye
Shruti Tople
AAML
24
4
0
08 Jun 2023
PILLAR: How to make semi-private learning more effective
Francesco Pinto
Yaxian Hu
Fanny Yang
Amartya Sanyal
52
11
0
06 Jun 2023
Unleashing the Power of Randomization in Auditing Differentially Private ML
Krishna Pillutla
Galen Andrew
Peter Kairouz
H. B. McMahan
Alina Oprea
Sewoong Oh
35
20
0
29 May 2023
Training Data Extraction From Pre-trained Language Models: A Survey
Shotaro Ishihara
29
46
0
25 May 2023
Privacy Auditing with One (1) Training Run
Thomas Steinke
Milad Nasr
Matthew Jagielski
44
77
0
15 May 2023
ProGAP: Progressive Graph Neural Networks with Differential Privacy Guarantees
Sina Sajadmanesh
D. Gática-Pérez
30
15
0
18 Apr 2023
A Randomized Approach for Tight Privacy Accounting
Jiachen T. Wang
Saeed Mahloujifar
Tong Wu
R. Jia
Prateek Mittal
36
9
0
17 Apr 2023
Exploring the Benefits of Visual Prompting in Differential Privacy
Yizhe Li
Yu-Lin Tsai
Xuebin Ren
Chia-Mu Yu
Pin-Yu Chen
AAML
VPVLM
24
18
0
22 Mar 2023
Can Membership Inferencing be Refuted?
Zhifeng Kong
A. Chowdhury
Kamalika Chaudhuri
MIALM
MIACV
29
6
0
07 Mar 2023
How to DP-fy ML: A Practical Guide to Machine Learning with Differential Privacy
Natalia Ponomareva
Hussein Hazimeh
Alexey Kurakin
Zheng Xu
Carson E. Denison
H. B. McMahan
Sergei Vassilvitskii
Steve Chien
Abhradeep Thakurta
96
167
0
01 Mar 2023
Tight Auditing of Differentially Private Machine Learning
Milad Nasr
Jamie Hayes
Thomas Steinke
Borja Balle
Florian Tramèr
Matthew Jagielski
Nicholas Carlini
Andreas Terzis
FedML
35
52
0
15 Feb 2023
Bounding Training Data Reconstruction in DP-SGD
Jamie Hayes
Saeed Mahloujifar
Borja Balle
AAML
FedML
33
39
0
14 Feb 2023
One-shot Empirical Privacy Estimation for Federated Learning
Galen Andrew
Peter Kairouz
Sewoong Oh
Alina Oprea
H. B. McMahan
Vinith Suriyakumar
FedML
27
32
0
06 Feb 2023
"Real Attackers Don't Compute Gradients": Bridging the Gap Between Adversarial ML Research and Practice
Giovanni Apruzzese
Hyrum S. Anderson
Savino Dambra
D. Freeman
Fabio Pierazzi
Kevin A. Roundy
AAML
31
75
0
29 Dec 2022
SoK: Let the Privacy Games Begin! A Unified Treatment of Data Inference Privacy in Machine Learning
A. Salem
Giovanni Cherubin
David E. Evans
Boris Köpf
Andrew J. Paverd
Anshuman Suri
Shruti Tople
Santiago Zanella Béguelin
47
35
0
21 Dec 2022
Differentially Private Image Classification from Features
Harsh Mehta
Walid Krichene
Abhradeep Thakurta
Alexey Kurakin
Ashok Cutkosky
52
7
0
24 Nov 2022
Private Multi-Winner Voting for Machine Learning
Adam Dziedzic
Christopher A. Choquette-Choo
Natalie Dullerud
Vinith Suriyakumar
Ali Shahin Shamsabadi
Muhammad Ahmad Kaleem
S. Jha
Nicolas Papernot
Xiao Wang
42
1
0
23 Nov 2022
Privacy in Practice: Private COVID-19 Detection in X-Ray Images (Extended Version)
Lucas Lange
Maja Schneider
Peter Christen
Erhard Rahm
21
7
0
21 Nov 2022
A Unified Framework for Quantifying Privacy Risk in Synthetic Data
M. Giomi
Franziska Boenisch
C. Wehmeyer
Borbála Tasnádi
19
56
0
18 Nov 2022
Provable Membership Inference Privacy
Zachary Izzo
Jinsung Yoon
Sercan Ö. Arik
James Zou
41
5
0
12 Nov 2022
TAPAS: a Toolbox for Adversarial Privacy Auditing of Synthetic Data
F. Houssiau
James Jordon
Samuel N. Cohen
Owen Daniel
Andrew Elliott
James Geddes
C. Mole
Camila Rangel Smith
Lukasz Szpruch
36
45
0
12 Nov 2022
Amplifying Membership Exposure via Data Poisoning
Yufei Chen
Chao Shen
Yun Shen
Cong Wang
Yang Zhang
AAML
43
28
0
01 Nov 2022
Analyzing Privacy Leakage in Machine Learning via Multiple Hypothesis Testing: A Lesson From Fano
Chuan Guo
Alexandre Sablayrolles
Maziar Sanjabi
FedML
29
17
0
24 Oct 2022
Generalised Likelihood Ratio Testing Adversaries through the Differential Privacy Lens
Georgios Kaissis
Alexander Ziller
Stefan Kolek Martinez de Azagra
Daniel Rueckert
12
0
0
24 Oct 2022
A General Framework for Auditing Differentially Private Machine Learning
Fred Lu
Joseph Munoz
Maya Fuchs
Tyler LeBlond
Elliott Zaresky-Williams
Edward Raff
Francis Ferraro
Brian Testa
FedML
22
35
0
16 Oct 2022
Differentially Private Deep Learning with ModelMix
Hanshen Xiao
Jun Wan
S. Devadas
29
3
0
07 Oct 2022
PAC Privacy: Automatic Privacy Measurement and Control of Data Processing
Hanshen Xiao
S. Devadas
21
11
0
07 Oct 2022
CANIFE: Crafting Canaries for Empirical Privacy Measurement in Federated Learning
Samuel Maddock
Alexandre Sablayrolles
Pierre Stock
FedML
20
22
0
06 Oct 2022
No Free Lunch in "Privacy for Free: How does Dataset Condensation Help Privacy"
Nicholas Carlini
Vitaly Feldman
Milad Nasr
DD
48
17
0
29 Sep 2022
Algorithms that Approximate Data Removal: New Results and Limitations
Vinith Suriyakumar
Ashia Wilson
MU
44
27
0
25 Sep 2022
M^4I: Multi-modal Models Membership Inference
Pingyi Hu
Zihan Wang
Ruoxi Sun
Hu Wang
Minhui Xue
39
26
0
15 Sep 2022
Previous
1
2
3
4
Next