Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2101.04230
Cited By
v1
v2
v3 (latest)
Explaining the Black-box Smoothly- A Counterfactual Approach
11 January 2021
Junyu Chen
Yong Du
Yufan He
W. Paul Segars
Ye Li
MedIm
FAtt
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Explaining the Black-box Smoothly- A Counterfactual Approach"
50 / 56 papers shown
Title
Explaining 3D Computed Tomography Classifiers with Counterfactuals
Joseph Paul Cohen
Louis Blankemeier
Akshay S. Chaudhari
MedIm
472
1
0
11 Feb 2025
Accurate Explanation Model for Image Classifiers using Class Association Embedding
Ruitao Xie
Jingbang Chen
Limai Jiang
Rui Xiao
Yi-Lun Pan
Yunpeng Cai
232
4
0
31 Dec 2024
Cross- and Intra-image Prototypical Learning for Multi-label Disease Diagnosis and Interpretation
Chong Wang
Fengbei Liu
Yuanhong Chen
Helen Frazer
Gustavo Carneiro
101
2
0
07 Nov 2024
Identifying Spurious Correlations using Counterfactual Alignment
Joseph Paul Cohen
Louis Blankemeier
Akshay S. Chaudhari
CML
98
1
0
01 Dec 2023
MIML: Multiplex Image Machine Learning for High Precision Cell Classification via Mechanical Traits within Microfluidic Systems
Khayrul Islam
Ratul Paul
Shen Wang
Yaling Liu
Partho Adhikary
Qiying Li
Xiaochen Qin
Yaling Liu
85
0
0
15 Sep 2023
Using Causal Analysis for Conceptual Deep Learning Explanation
Sumedha Singla
Stephen Wallace
Sofia Triantafillou
Kayhan Batmanghelich
CML
34
15
0
10 Jul 2021
Gifsplanation via Latent Shift: A Simple Autoencoder Approach to Counterfactual Generation for Chest X-rays
Joseph Paul Cohen
Rupert Brooks
Sovann En
Evan Zucker
Anuj Pareek
M. Lungren
Akshay S. Chaudhari
FAtt
MedIm
78
3
0
18 Feb 2021
Scientific Discovery by Generating Counterfactuals using Image Translation
Arunachalam Narayanaswamy
Subhashini Venugopalan
D. Webster
L. Peng
G. Corrado
...
Abigail E. Huang
Siva Balasubramanian
Michael P. Brenner
Phil Q. Nelson
A. Varadarajan
DiffM
MedIm
116
21
0
10 Jul 2020
SCOUT: Self-aware Discriminant Counterfactual Explanations
Pei Wang
Nuno Vasconcelos
FAtt
55
82
0
16 Apr 2020
Automated Cardiothoracic Ratio Calculation and Cardiomegaly Detection using Deep Learning Approach
Isarun Chamveha
Treethep Promwiset
T. Tongdee
P. Saiviroonporn
Warasinee Chaisangmongkon
MedIm
34
27
0
18 Feb 2020
Preserving Causal Constraints in Counterfactual Explanations for Machine Learning Classifiers
Divyat Mahajan
Chenhao Tan
Amit Sharma
OOD
CML
132
206
0
06 Dec 2019
Explanation by Progressive Exaggeration
Sumedha Singla
Brian Pollack
Junxiang Chen
Kayhan Batmanghelich
FAtt
MedIm
96
103
0
01 Nov 2019
Seeing What a GAN Cannot Generate
David Bau
Jun-Yan Zhu
Jonas Wulff
William S. Peebles
Hendrik Strobelt
Bolei Zhou
Antonio Torralba
GAN
97
309
0
24 Oct 2019
Hidden Stratification Causes Clinically Meaningful Failures in Machine Learning for Medical Imaging
Luke Oakden-Rayner
Jared A. Dunnmon
G. Carneiro
Christopher Ré
OOD
76
384
0
27 Sep 2019
Explaining Visual Models by Causal Attribution
Álvaro Parafita
Jordi Vitrià
CML
FAtt
103
35
0
19 Sep 2019
Testing the robustness of attribution methods for convolutional neural networks in MRI-based Alzheimer's disease classification
Fabian Eitel
K. Ritter
OOD
FAtt
50
74
0
19 Sep 2019
Deep neural network or dermatologist?
Kyle Young
Gareth Booth
B. Simpson
R. Dutton
Sally Shrapnel
MedIm
60
69
0
19 Aug 2019
Towards Realistic Individual Recourse and Actionable Explanations in Black-Box Decision Making Systems
Shalmali Joshi
Oluwasanmi Koyejo
Warut D. Vijitbenjaronk
Been Kim
Joydeep Ghosh
FaML
74
188
0
22 Jul 2019
Generative Counterfactual Introspection for Explainable Deep Learning
Shusen Liu
B. Kailkhura
Donald Loveland
Yong Han
133
90
0
06 Jul 2019
Interpretable Counterfactual Explanations Guided by Prototypes
A. V. Looveren
Janis Klaise
FAtt
80
387
0
03 Jul 2019
Global and Local Interpretability for Cardiac MRI Classification
J. Clough
Ilkay Oksuz
Esther Puyol-Antón
B. Ruijsink
A. King
Julia A. Schnabel
79
61
0
14 Jun 2019
Explaining Machine Learning Classifiers through Diverse Counterfactual Explanations
R. Mothilal
Amit Sharma
Chenhao Tan
CML
128
1,029
0
19 May 2019
What Clinicians Want: Contextualizing Explainable Machine Learning for Clinical End Use
S. Tonekaboni
Shalmali Joshi
M. Mccradden
Anna Goldenberg
83
396
0
13 May 2019
Counterfactual Visual Explanations
Yash Goyal
Ziyan Wu
Jan Ernst
Dhruv Batra
Devi Parikh
Stefan Lee
CML
80
512
0
16 Apr 2019
CheXpert: A Large Chest Radiograph Dataset with Uncertainty Labels and Expert Comparison
Jeremy Irvin
Pranav Rajpurkar
M. Ko
Yifan Yu
Silviana Ciurea-Ilcus
...
D. Larson
C. Langlotz
Bhavik Patel
M. Lungren
A. Ng
118
2,604
0
21 Jan 2019
A Style-Based Generator Architecture for Generative Adversarial Networks
Tero Karras
S. Laine
Timo Aila
625
10,595
0
12 Dec 2018
Explaining Image Classifiers by Counterfactual Generation
C. Chang
Elliot Creager
Anna Goldenberg
David Duvenaud
VLM
78
265
0
20 Jul 2018
IntroVAE: Introspective Variational Autoencoders for Photographic Image Synthesis
Huaibo Huang
Zhihang Li
Ran He
Zhenan Sun
Tieniu Tan
DRL
53
266
0
17 Jul 2018
xGEMs: Generating Examplars to Explain Black-Box Models
Shalmali Joshi
Oluwasanmi Koyejo
Been Kim
Joydeep Ghosh
MLAU
62
40
0
22 Jun 2018
Towards safe deep learning: accurately quantifying biomarker uncertainty in neural network predictions
Zach Eaton-Rosen
Felix J. S. Bragman
Sotirios Bisdas
Sebastien Ourselin
M. Jorge Cardoso
UQCV
65
87
0
22 Jun 2018
RISE: Randomized Input Sampling for Explanation of Black-box Models
Vitali Petsiuk
Abir Das
Kate Saenko
FAtt
188
1,176
0
19 Jun 2018
To Trust Or Not To Trust A Classifier
Heinrich Jiang
Been Kim
Melody Y. Guan
Maya R. Gupta
UQCV
179
473
0
30 May 2018
Large Scale Automated Reading of Frontal and Lateral Chest X-Rays using Dual Convolutional Neural Networks
Jonathan Rubin
Deepan Sanghavi
Claire Zhao
Kathy Lee
Ashequl Qadir
M. Xu-Wilson
MedIm
35
84
0
20 Apr 2018
Explanations based on the Missing: Towards Contrastive Explanations with Pertinent Negatives
Amit Dhurandhar
Pin-Yu Chen
Ronny Luss
Chun-Chen Tu
Pai-Shun Ting
Karthikeyan Shanmugam
Payel Das
FAtt
129
592
0
21 Feb 2018
Spectral Normalization for Generative Adversarial Networks
Takeru Miyato
Toshiki Kataoka
Masanori Koyama
Yuichi Yoshida
ODL
164
4,445
0
16 Feb 2018
cGANs with Projection Discriminator
Takeru Miyato
Masanori Koyama
GAN
78
771
0
15 Feb 2018
Interpretability Beyond Feature Attribution: Quantitative Testing with Concept Activation Vectors (TCAV)
Been Kim
Martin Wattenberg
Justin Gilmer
Carrie J. Cai
James Wexler
F. Viégas
Rory Sayres
FAtt
248
1,849
0
30 Nov 2017
CheXNet: Radiologist-Level Pneumonia Detection on Chest X-Rays with Deep Learning
Pranav Rajpurkar
Jeremy Irvin
Kaylie Zhu
Brandon Yang
Hershel Mehta
...
Aarti Bagul
C. Langlotz
K. Shpanskaya
M. Lungren
A. Ng
LM&MA
99
2,712
0
14 Nov 2017
A Unified Approach to Interpreting Model Predictions
Scott M. Lundberg
Su-In Lee
FAtt
1.1K
22,090
0
22 May 2017
Real Time Image Saliency for Black Box Classifiers
P. Dabkowski
Y. Gal
72
593
0
22 May 2017
Network Dissection: Quantifying Interpretability of Deep Visual Representations
David Bau
Bolei Zhou
A. Khosla
A. Oliva
Antonio Torralba
MILM
FAtt
158
1,526
1
19 Apr 2017
Interpretable Explanations of Black Boxes by Meaningful Perturbation
Ruth C. Fong
Andrea Vedaldi
FAtt
AAML
83
1,526
0
11 Apr 2017
Learning Important Features Through Propagating Activation Differences
Avanti Shrikumar
Peyton Greenside
A. Kundaje
FAtt
203
3,884
0
10 Apr 2017
Axiomatic Attribution for Deep Networks
Mukund Sundararajan
Ankur Taly
Qiqi Yan
OOD
FAtt
193
6,027
0
04 Mar 2017
Grad-CAM: Visual Explanations from Deep Networks via Gradient-based Localization
Ramprasaath R. Selvaraju
Michael Cogswell
Abhishek Das
Ramakrishna Vedantam
Devi Parikh
Dhruv Batra
FAtt
335
20,110
0
07 Oct 2016
Densely Connected Convolutional Networks
Gao Huang
Zhuang Liu
Laurens van der Maaten
Kilian Q. Weinberger
PINN
3DV
828
36,892
0
25 Aug 2016
"Why Should I Trust You?": Explaining the Predictions of Any Classifier
Marco Tulio Ribeiro
Sameer Singh
Carlos Guestrin
FAtt
FaML
1.2K
17,071
0
16 Feb 2016
Deep Residual Learning for Image Recognition
Kaiming He
Xinming Zhang
Shaoqing Ren
Jian Sun
MedIm
2.3K
194,510
0
10 Dec 2015
Evaluating the visualization of what a Deep Neural Network has learned
Wojciech Samek
Alexander Binder
G. Montavon
Sebastian Lapuschkin
K. Müller
XAI
139
1,200
0
21 Sep 2015
Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks
Shaoqing Ren
Kaiming He
Ross B. Girshick
Jian Sun
AIMat
ObjD
533
62,409
0
04 Jun 2015
1
2
Next