Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2012.14313
Cited By
How to Train Your Differentiable Filter
28 December 2020
Alina Kloss
Georg Martius
Jeannette Bohg
Re-assign community
ArXiv
PDF
HTML
Papers citing
"How to Train Your Differentiable Filter"
30 / 30 papers shown
Title
Dynamical Variational Autoencoders: A Comprehensive Review
Laurent Girin
Simon Leglaive
Xiaoyu Bie
Julien Diard
Thomas Hueber
Xavier Alameda-Pineda
BDL
47
212
0
28 Aug 2020
Towards Differentiable Resampling
Michael Zhu
Kevin Patrick Murphy
Rico Jonschkowski
36
27
0
24 Apr 2020
Learning to Control PDEs with Differentiable Physics
Philipp Holl
V. Koltun
Nils Thuerey
AI4CE
PINN
58
187
0
21 Jan 2020
Particle Filter Recurrent Neural Networks
Xiao Ma
Peter Karkus
David Hsu
Wee Sun Lee
45
82
0
30 May 2019
Differentiable Algorithm Networks for Composable Robot Learning
Peter Karkus
Xiao Ma
David Hsu
L. Kaelbling
Wee Sun Lee
Tomas Lozano-Perez
35
71
0
28 May 2019
Differentiable MPC for End-to-end Planning and Control
Brandon Amos
I. D. Rodriguez
Jacob Sacks
Byron Boots
J. Zico Kolter
41
366
0
31 Oct 2018
Differentiable Particle Filters: End-to-End Learning with Algorithmic Priors
Rico Jonschkowski
Divyam Rastogi
Oliver Brock
41
135
0
28 May 2018
Particle Filter Networks with Application to Visual Localization
Peter Karkus
David Hsu
Wee Sun Lee
3DPC
41
117
0
23 May 2018
MPC-Inspired Neural Network Policies for Sequential Decision Making
M. Pereira
David D. Fan
G. N. An
Evangelos Theodorou
BDL
37
38
0
15 Feb 2018
Learning to Search with MCTSnets
A. Guez
T. Weber
Ioannis Antonoglou
Karen Simonyan
Oriol Vinyals
Daan Wierstra
Rémi Munos
David Silver
54
85
0
13 Feb 2018
TreeQN and ATreeC: Differentiable Tree-Structured Models for Deep Reinforcement Learning
Gregory Farquhar
Tim Rocktaschel
Maximilian Igl
Shimon Whiteson
OffRL
48
71
0
31 Oct 2017
A Disentangled Recognition and Nonlinear Dynamics Model for Unsupervised Learning
Marco Fraccaro
Simon Kamronn
Ulrich Paquet
Ole Winther
BDL
41
282
0
16 Oct 2017
Combining Learned and Analytical Models for Predicting Action Effects from Sensory Data
Alina Kloss
S. Schaal
Jeannette Bohg
46
85
0
11 Oct 2017
Value Prediction Network
Junhyuk Oh
Satinder Singh
Honglak Lee
60
332
0
11 Jul 2017
Path Integral Networks: End-to-End Differentiable Optimal Control
Masashi Okada
Luca Rigazio
T. Aoshima
PINN
46
56
0
29 Jun 2017
Variational Sequential Monte Carlo
C. A. Naesseth
Scott W. Linderman
Rajesh Ranganath
David M. Blei
BDL
117
214
0
31 May 2017
Auto-Encoding Sequential Monte Carlo
T. Le
Maximilian Igl
Tom Rainforth
Tom Jin
Frank Wood
BDL
DRL
164
151
0
29 May 2017
Filtering Variational Objectives
Chris J. Maddison
Dieterich Lawson
George Tucker
N. Heess
Mohammad Norouzi
A. Mnih
Arnaud Doucet
Yee Whye Teh
FedML
98
210
0
25 May 2017
A probabilistic data-driven model for planar pushing
Maria Bauzá
Alberto Rodriguez
41
104
0
10 Apr 2017
QMDP-Net: Deep Learning for Planning under Partial Observability
Peter Karkus
David Hsu
Wee Sun Lee
PINN
84
156
0
20 Mar 2017
Structured Inference Networks for Nonlinear State Space Models
Rahul G. Krishnan
Uri Shalit
David Sontag
BDL
56
452
0
30 Sep 2016
Backprop KF: Learning Discriminative Deterministic State Estimators
Tuomas Haarnoja
Anurag Ajay
Sergey Levine
Pieter Abbeel
34
201
0
23 May 2016
Deep Variational Bayes Filters: Unsupervised Learning of State Space Models from Raw Data
Maximilian Karl
Maximilian Sölch
Justin Bayer
Patrick van der Smagt
BDL
26
373
0
20 May 2016
On the Effects of Measurement Uncertainty in Optimal Control of Contact Interactions
Brahayam Pontón
S. Schaal
Ludovic Righetti
16
7
0
13 May 2016
More than a Million Ways to Be Pushed: A High-Fidelity Experimental Dataset of Planar Pushing
Kuan-Ting Yu
Maria Bauzá
Nima Fazeli
Alberto Rodriguez
23
181
0
14 Apr 2016
Value Iteration Networks
Aviv Tamar
Yi Wu
G. Thomas
Sergey Levine
Pieter Abbeel
52
650
0
09 Feb 2016
Black box variational inference for state space models
Evan Archer
Il Memming Park
Lars Buesing
John P. Cunningham
Liam Paninski
BDL
53
160
0
23 Nov 2015
Robust Gaussian Filtering using a Pseudo Measurement
Manuel Wüthrich
C. Cifuentes
Sebastian Trimpe
Franziska Meier
Jeannette Bohg
J. Issac
S. Schaal
26
17
0
14 Sep 2015
Embed to Control: A Locally Linear Latent Dynamics Model for Control from Raw Images
Manuel Watter
Jost Tobias Springenberg
Joschka Boedecker
Martin Riedmiller
BDL
39
839
0
24 Jun 2015
Adam: A Method for Stochastic Optimization
Diederik P. Kingma
Jimmy Ba
ODL
577
149,474
0
22 Dec 2014
1