ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2012.14313
  4. Cited By
How to Train Your Differentiable Filter

How to Train Your Differentiable Filter

28 December 2020
Alina Kloss
Georg Martius
Jeannette Bohg
ArXivPDFHTML

Papers citing "How to Train Your Differentiable Filter"

30 / 30 papers shown
Title
Dynamical Variational Autoencoders: A Comprehensive Review
Dynamical Variational Autoencoders: A Comprehensive Review
Laurent Girin
Simon Leglaive
Xiaoyu Bie
Julien Diard
Thomas Hueber
Xavier Alameda-Pineda
BDL
47
212
0
28 Aug 2020
Towards Differentiable Resampling
Towards Differentiable Resampling
Michael Zhu
Kevin Patrick Murphy
Rico Jonschkowski
36
27
0
24 Apr 2020
Learning to Control PDEs with Differentiable Physics
Learning to Control PDEs with Differentiable Physics
Philipp Holl
V. Koltun
Nils Thuerey
AI4CE
PINN
58
187
0
21 Jan 2020
Particle Filter Recurrent Neural Networks
Particle Filter Recurrent Neural Networks
Xiao Ma
Peter Karkus
David Hsu
Wee Sun Lee
45
82
0
30 May 2019
Differentiable Algorithm Networks for Composable Robot Learning
Differentiable Algorithm Networks for Composable Robot Learning
Peter Karkus
Xiao Ma
David Hsu
L. Kaelbling
Wee Sun Lee
Tomas Lozano-Perez
35
71
0
28 May 2019
Differentiable MPC for End-to-end Planning and Control
Differentiable MPC for End-to-end Planning and Control
Brandon Amos
I. D. Rodriguez
Jacob Sacks
Byron Boots
J. Zico Kolter
41
366
0
31 Oct 2018
Differentiable Particle Filters: End-to-End Learning with Algorithmic
  Priors
Differentiable Particle Filters: End-to-End Learning with Algorithmic Priors
Rico Jonschkowski
Divyam Rastogi
Oliver Brock
41
135
0
28 May 2018
Particle Filter Networks with Application to Visual Localization
Particle Filter Networks with Application to Visual Localization
Peter Karkus
David Hsu
Wee Sun Lee
3DPC
41
117
0
23 May 2018
MPC-Inspired Neural Network Policies for Sequential Decision Making
MPC-Inspired Neural Network Policies for Sequential Decision Making
M. Pereira
David D. Fan
G. N. An
Evangelos Theodorou
BDL
37
38
0
15 Feb 2018
Learning to Search with MCTSnets
Learning to Search with MCTSnets
A. Guez
T. Weber
Ioannis Antonoglou
Karen Simonyan
Oriol Vinyals
Daan Wierstra
Rémi Munos
David Silver
54
85
0
13 Feb 2018
TreeQN and ATreeC: Differentiable Tree-Structured Models for Deep
  Reinforcement Learning
TreeQN and ATreeC: Differentiable Tree-Structured Models for Deep Reinforcement Learning
Gregory Farquhar
Tim Rocktaschel
Maximilian Igl
Shimon Whiteson
OffRL
48
71
0
31 Oct 2017
A Disentangled Recognition and Nonlinear Dynamics Model for Unsupervised
  Learning
A Disentangled Recognition and Nonlinear Dynamics Model for Unsupervised Learning
Marco Fraccaro
Simon Kamronn
Ulrich Paquet
Ole Winther
BDL
41
282
0
16 Oct 2017
Combining Learned and Analytical Models for Predicting Action Effects
  from Sensory Data
Combining Learned and Analytical Models for Predicting Action Effects from Sensory Data
Alina Kloss
S. Schaal
Jeannette Bohg
46
85
0
11 Oct 2017
Value Prediction Network
Value Prediction Network
Junhyuk Oh
Satinder Singh
Honglak Lee
60
332
0
11 Jul 2017
Path Integral Networks: End-to-End Differentiable Optimal Control
Path Integral Networks: End-to-End Differentiable Optimal Control
Masashi Okada
Luca Rigazio
T. Aoshima
PINN
46
56
0
29 Jun 2017
Variational Sequential Monte Carlo
Variational Sequential Monte Carlo
C. A. Naesseth
Scott W. Linderman
Rajesh Ranganath
David M. Blei
BDL
117
214
0
31 May 2017
Auto-Encoding Sequential Monte Carlo
Auto-Encoding Sequential Monte Carlo
T. Le
Maximilian Igl
Tom Rainforth
Tom Jin
Frank Wood
BDL
DRL
164
151
0
29 May 2017
Filtering Variational Objectives
Filtering Variational Objectives
Chris J. Maddison
Dieterich Lawson
George Tucker
N. Heess
Mohammad Norouzi
A. Mnih
Arnaud Doucet
Yee Whye Teh
FedML
98
210
0
25 May 2017
A probabilistic data-driven model for planar pushing
A probabilistic data-driven model for planar pushing
Maria Bauzá
Alberto Rodriguez
41
104
0
10 Apr 2017
QMDP-Net: Deep Learning for Planning under Partial Observability
QMDP-Net: Deep Learning for Planning under Partial Observability
Peter Karkus
David Hsu
Wee Sun Lee
PINN
84
156
0
20 Mar 2017
Structured Inference Networks for Nonlinear State Space Models
Structured Inference Networks for Nonlinear State Space Models
Rahul G. Krishnan
Uri Shalit
David Sontag
BDL
56
452
0
30 Sep 2016
Backprop KF: Learning Discriminative Deterministic State Estimators
Backprop KF: Learning Discriminative Deterministic State Estimators
Tuomas Haarnoja
Anurag Ajay
Sergey Levine
Pieter Abbeel
34
201
0
23 May 2016
Deep Variational Bayes Filters: Unsupervised Learning of State Space
  Models from Raw Data
Deep Variational Bayes Filters: Unsupervised Learning of State Space Models from Raw Data
Maximilian Karl
Maximilian Sölch
Justin Bayer
Patrick van der Smagt
BDL
26
373
0
20 May 2016
On the Effects of Measurement Uncertainty in Optimal Control of Contact
  Interactions
On the Effects of Measurement Uncertainty in Optimal Control of Contact Interactions
Brahayam Pontón
S. Schaal
Ludovic Righetti
16
7
0
13 May 2016
More than a Million Ways to Be Pushed: A High-Fidelity Experimental
  Dataset of Planar Pushing
More than a Million Ways to Be Pushed: A High-Fidelity Experimental Dataset of Planar Pushing
Kuan-Ting Yu
Maria Bauzá
Nima Fazeli
Alberto Rodriguez
23
181
0
14 Apr 2016
Value Iteration Networks
Value Iteration Networks
Aviv Tamar
Yi Wu
G. Thomas
Sergey Levine
Pieter Abbeel
52
650
0
09 Feb 2016
Black box variational inference for state space models
Black box variational inference for state space models
Evan Archer
Il Memming Park
Lars Buesing
John P. Cunningham
Liam Paninski
BDL
53
160
0
23 Nov 2015
Robust Gaussian Filtering using a Pseudo Measurement
Robust Gaussian Filtering using a Pseudo Measurement
Manuel Wüthrich
C. Cifuentes
Sebastian Trimpe
Franziska Meier
Jeannette Bohg
J. Issac
S. Schaal
26
17
0
14 Sep 2015
Embed to Control: A Locally Linear Latent Dynamics Model for Control
  from Raw Images
Embed to Control: A Locally Linear Latent Dynamics Model for Control from Raw Images
Manuel Watter
Jost Tobias Springenberg
Joschka Boedecker
Martin Riedmiller
BDL
39
839
0
24 Jun 2015
Adam: A Method for Stochastic Optimization
Adam: A Method for Stochastic Optimization
Diederik P. Kingma
Jimmy Ba
ODL
577
149,474
0
22 Dec 2014
1