ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2012.10630
  4. Cited By
GLISTER: Generalization based Data Subset Selection for Efficient and
  Robust Learning

GLISTER: Generalization based Data Subset Selection for Efficient and Robust Learning

19 December 2020
Krishnateja Killamsetty
D. Sivasubramanian
Ganesh Ramakrishnan
Rishabh Iyer University of Texas at Dallas
ArXivPDFHTML

Papers citing "GLISTER: Generalization based Data Subset Selection for Efficient and Robust Learning"

50 / 136 papers shown
Title
Importance-Aware Adaptive Dataset Distillation
Importance-Aware Adaptive Dataset Distillation
Guang Li
Ren Togo
Takahiro Ogawa
Miki Haseyama
DD
26
6
0
29 Jan 2024
DsDm: Model-Aware Dataset Selection with Datamodels
DsDm: Model-Aware Dataset Selection with Datamodels
Logan Engstrom
Axel Feldmann
A. Madry
OODD
15
47
0
23 Jan 2024
Gradient Coreset for Federated Learning
Gradient Coreset for Federated Learning
D. Sivasubramanian
Lokesh Nagalapatti
Rishabh K. Iyer
Ganesh Ramakrishnan
FedML
29
1
0
13 Jan 2024
Efficient Architecture Search via Bi-level Data Pruning
Efficient Architecture Search via Bi-level Data Pruning
Chongjun Tu
Peng Ye
Weihao Lin
Hancheng Ye
Chong Yu
Tao Chen
Baopu Li
Wanli Ouyang
40
2
0
21 Dec 2023
Quilt: Robust Data Segment Selection against Concept Drifts
Quilt: Robust Data Segment Selection against Concept Drifts
Minsu Kim
Seonghyeon Hwang
Steven Euijong Whang
VLM
11
1
0
15 Dec 2023
Mitigating Label Bias in Machine Learning: Fairness through Confident
  Learning
Mitigating Label Bias in Machine Learning: Fairness through Confident Learning
Yixuan Zhang
Boyu Li
Zenan Ling
Feng Zhou
FaML
11
3
0
14 Dec 2023
Benchmarking of Query Strategies: Towards Future Deep Active Learning
Benchmarking of Query Strategies: Towards Future Deep Active Learning
Shiryu Ueno
Yusei Yamada
Shunsuke Nakatsuka
Kunihito Kato
FedML
6
2
0
10 Dec 2023
Not All Data Matters: An End-to-End Adaptive Dataset Pruning Framework
  for Enhancing Model Performance and Efficiency
Not All Data Matters: An End-to-End Adaptive Dataset Pruning Framework for Enhancing Model Performance and Efficiency
Suorong Yang
Hongchao Yang
Suhan Guo
Shen Furao
Jian Zhao
17
2
0
09 Dec 2023
Soft Random Sampling: A Theoretical and Empirical Analysis
Soft Random Sampling: A Theoretical and Empirical Analysis
Xiaodong Cui
Ashish R. Mittal
Songtao Lu
Wei Zhang
G. Saon
Brian Kingsbury
36
1
0
21 Nov 2023
Robust Data Pruning under Label Noise via Maximizing Re-labeling
  Accuracy
Robust Data Pruning under Label Noise via Maximizing Re-labeling Accuracy
Dongmin Park
Seola Choi
Doyoung Kim
Hwanjun Song
Jae-Gil Lee
NoLa
60
20
0
02 Nov 2023
Learning to Rank for Active Learning via Multi-Task Bilevel Optimization
Learning to Rank for Active Learning via Multi-Task Bilevel Optimization
Zixin Ding
Si-An Chen
Ruoxi Jia
Yuxin Chen
35
1
0
25 Oct 2023
You Only Condense Once: Two Rules for Pruning Condensed Datasets
You Only Condense Once: Two Rules for Pruning Condensed Datasets
Yang He
Lingao Xiao
Joey Tianyi Zhou
35
14
0
21 Oct 2023
ASP: Automatic Selection of Proxy dataset for efficient AutoML
ASP: Automatic Selection of Proxy dataset for efficient AutoML
Peng Yao
Chao Liao
Jiyuan Jia
Jianchao Tan
Bin Chen
Chengru Song
Di Zhang
11
2
0
17 Oct 2023
D2 Pruning: Message Passing for Balancing Diversity and Difficulty in
  Data Pruning
D2 Pruning: Message Passing for Balancing Diversity and Difficulty in Data Pruning
A. Maharana
Prateek Yadav
Mohit Bansal
19
28
0
11 Oct 2023
RK-core: An Established Methodology for Exploring the Hierarchical
  Structure within Datasets
RK-core: An Established Methodology for Exploring the Hierarchical Structure within Datasets
Yao Lu
Yutian Huang
Jiaqi Nie
Zuohui Chen
Qi Xuan
19
1
0
10 Oct 2023
Towards Lossless Dataset Distillation via Difficulty-Aligned Trajectory
  Matching
Towards Lossless Dataset Distillation via Difficulty-Aligned Trajectory Matching
Ziyao Guo
Kai Wang
George Cazenavette
Hui Li
Kaipeng Zhang
Yang You
DD
32
61
0
09 Oct 2023
Anchor Points: Benchmarking Models with Much Fewer Examples
Anchor Points: Benchmarking Models with Much Fewer Examples
Rajan Vivek
Kawin Ethayarajh
Diyi Yang
Douwe Kiela
ALM
29
21
0
14 Sep 2023
Dataset Quantization
Dataset Quantization
Daquan Zhou
Kaixin Wang
Jianyang Gu
Xiang Peng
Dongze Lian
Yifan Zhang
Yang You
Jiashi Feng
DD
29
37
0
21 Aug 2023
Data-Centric Diet: Effective Multi-center Dataset Pruning for Medical
  Image Segmentation
Data-Centric Diet: Effective Multi-center Dataset Pruning for Medical Image Segmentation
Yongkang He
Mingjin Chen
Zhi-Yi Yang
Yongyi Lu
31
2
0
02 Aug 2023
Dataset Distillation Meets Provable Subset Selection
Dataset Distillation Meets Provable Subset Selection
M. Tukan
Alaa Maalouf
Margarita Osadchy
DD
23
4
0
16 Jul 2023
Boosting Backdoor Attack with A Learnable Poisoning Sample Selection
  Strategy
Boosting Backdoor Attack with A Learnable Poisoning Sample Selection Strategy
Zihao Zhu
Mingda Zhang
Shaokui Wei
Li Shen
Yanbo Fan
Baoyuan Wu
AAML
SILM
42
9
0
14 Jul 2023
Active Learning with Contrastive Pre-training for Facial Expression
  Recognition
Active Learning with Contrastive Pre-training for Facial Expression Recognition
Shuvendu Roy
Ali Etemad
26
5
0
06 Jul 2023
Revisiting Sample Size Determination in Natural Language Understanding
Revisiting Sample Size Determination in Natural Language Understanding
Ernie Chang
Muhammad Hassan Rashid
Pin-Jie Lin
Changsheng Zhao
Vera Demberg
Yangyang Shi
Vikas Chandra
15
1
0
01 Jul 2023
Large-scale Dataset Pruning with Dynamic Uncertainty
Large-scale Dataset Pruning with Dynamic Uncertainty
Muyang He
Shuo Yang
Tiejun Huang
Bo-Lu Zhao
31
25
0
08 Jun 2023
Towards Sustainable Learning: Coresets for Data-efficient Deep Learning
Towards Sustainable Learning: Coresets for Data-efficient Deep Learning
Yu Yang
Hao Kang
Baharan Mirzasoleiman
30
33
0
02 Jun 2023
Repeated Random Sampling for Minimizing the Time-to-Accuracy of Learning
Repeated Random Sampling for Minimizing the Time-to-Accuracy of Learning
Patrik Okanovic
R. Waleffe
Vasilis Mageirakos
Konstantinos E. Nikolakakis
Amin Karbasi
Dionysis Kalogerias
Nezihe Merve Gürel
Theodoros Rekatsinas
DD
39
12
0
28 May 2023
Distill Gold from Massive Ores: Efficient Dataset Distillation via
  Critical Samples Selection
Distill Gold from Massive Ores: Efficient Dataset Distillation via Critical Samples Selection
Yue Xu
Yong-Lu Li
Kaitong Cui
Ziyu Wang
Cewu Lu
Yu-Wing Tai
Chi-Keung Tang
DD
33
8
0
28 May 2023
DoReMi: Optimizing Data Mixtures Speeds Up Language Model Pretraining
DoReMi: Optimizing Data Mixtures Speeds Up Language Model Pretraining
Sang Michael Xie
Hieu H. Pham
Xuanyi Dong
Nan Du
Hanxiao Liu
Yifeng Lu
Percy Liang
Quoc V. Le
Tengyu Ma
Adams Wei Yu
MoMe
MoE
31
174
0
17 May 2023
Accelerating Batch Active Learning Using Continual Learning Techniques
Accelerating Batch Active Learning Using Continual Learning Techniques
Arnav M. Das
Gantavya Bhatt
M. Bhalerao
Vianne R. Gao
Rui Yang
J. Bilmes
VLM
CLL
24
10
0
10 May 2023
Bayesian Pseudo-Coresets via Contrastive Divergence
Bayesian Pseudo-Coresets via Contrastive Divergence
Piyush Tiwary
Kumar Shubham
V. Kashyap
Prathosh A.P.
21
3
0
20 Mar 2023
Provable Data Subset Selection For Efficient Neural Network Training
Provable Data Subset Selection For Efficient Neural Network Training
M. Tukan
Samson Zhou
Alaa Maalouf
Daniela Rus
Vladimir Braverman
Dan Feldman
MLT
23
9
0
09 Mar 2023
InfoBatch: Lossless Training Speed Up by Unbiased Dynamic Data Pruning
InfoBatch: Lossless Training Speed Up by Unbiased Dynamic Data Pruning
Ziheng Qin
K. Wang
Zangwei Zheng
Jianyang Gu
Xiang Peng
...
Daquan Zhou
Lei Shang
Baigui Sun
Xuansong Xie
Yang You
116
46
0
08 Mar 2023
Loss-Curvature Matching for Dataset Selection and Condensation
Loss-Curvature Matching for Dataset Selection and Condensation
Seung-Jae Shin
Heesun Bae
DongHyeok Shin
Weonyoung Joo
Il-Chul Moon
DD
38
24
0
08 Mar 2023
Data-Efficient Training of CNNs and Transformers with Coresets: A
  Stability Perspective
Data-Efficient Training of CNNs and Transformers with Coresets: A Stability Perspective
Animesh Gupta
Irtiza Hassan
Dilip K. Prasad
D. K. Gupta
21
2
0
03 Mar 2023
Finding Support Examples for In-Context Learning
Finding Support Examples for In-Context Learning
Xiaonan Li
Xipeng Qiu
11
87
0
27 Feb 2023
Less is More: Data Pruning for Faster Adversarial Training
Less is More: Data Pruning for Faster Adversarial Training
Yize Li
Pu Zhao
X. Lin
B. Kailkhura
Ryan Goldh
AAML
15
9
0
23 Feb 2023
Data pruning and neural scaling laws: fundamental limitations of
  score-based algorithms
Data pruning and neural scaling laws: fundamental limitations of score-based algorithms
Fadhel Ayed
Soufiane Hayou
9
9
0
14 Feb 2023
Learning to Select Pivotal Samples for Meta Re-weighting
Learning to Select Pivotal Samples for Meta Re-weighting
Yinjun Wu
Adam Stein
J. Gardner
Mayur Naik
18
0
0
09 Feb 2023
Best Practices in Active Learning for Semantic Segmentation
Best Practices in Active Learning for Semantic Segmentation
Sudhanshu Mittal
J. Niemeijer
Jörg P. Schäfer
Thomas Brox
VLM
21
14
0
08 Feb 2023
Efficient Adversarial Contrastive Learning via Robustness-Aware Coreset
  Selection
Efficient Adversarial Contrastive Learning via Robustness-Aware Coreset Selection
Xilie Xu
Jingfeng Zhang
Feng Liu
Masashi Sugiyama
Mohan S. Kankanhalli
AAML
19
15
0
08 Feb 2023
Two-step hyperparameter optimization method: Accelerating hyperparameter
  search by using a fraction of a training dataset
Two-step hyperparameter optimization method: Accelerating hyperparameter search by using a fraction of a training dataset
Sungduk Yu
M. Pritchard
Po-Lun Ma
Balwinder Singh
S. Silva
34
2
0
08 Feb 2023
Data Selection for Language Models via Importance Resampling
Data Selection for Language Models via Importance Resampling
Sang Michael Xie
Shibani Santurkar
Tengyu Ma
Percy Liang
30
170
0
06 Feb 2023
MILO: Model-Agnostic Subset Selection Framework for Efficient Model
  Training and Tuning
MILO: Model-Agnostic Subset Selection Framework for Efficient Model Training and Tuning
Krishnateja Killamsetty
A. Evfimievski
Tejaswini Pedapati
K. Kate
Lucian Popa
Rishabh K. Iyer
19
6
0
30 Jan 2023
Dataset Distillation: A Comprehensive Review
Dataset Distillation: A Comprehensive Review
Ruonan Yu
Songhua Liu
Xinchao Wang
DD
39
121
0
17 Jan 2023
CiT: Curation in Training for Effective Vision-Language Data
CiT: Curation in Training for Effective Vision-Language Data
Hu Xu
Saining Xie
Po-Yao (Bernie) Huang
Licheng Yu
Russ Howes
Gargi Ghosh
Luke Zettlemoyer
Christoph Feichtenhofer
VLM
DiffM
27
24
0
05 Jan 2023
Speeding up NAS with Adaptive Subset Selection
Speeding up NAS with Adaptive Subset Selection
Vishak Prasad
Colin White
P. Jain
Sibasis Nayak
Ganesh Ramakrishnan
BDL
18
5
0
02 Nov 2022
Partitioned Gradient Matching-based Data Subset Selection for
  Compute-Efficient Robust ASR Training
Partitioned Gradient Matching-based Data Subset Selection for Compute-Efficient Robust ASR Training
Ashish R. Mittal
D. Sivasubramanian
Rishabh K. Iyer
P. Jyothi
Ganesh Ramakrishnan
17
3
0
30 Oct 2022
Coverage-centric Coreset Selection for High Pruning Rates
Coverage-centric Coreset Selection for High Pruning Rates
Haizhong Zheng
Rui Liu
Fan Lai
Atul Prakash
25
52
0
28 Oct 2022
A Survey of Dataset Refinement for Problems in Computer Vision Datasets
A Survey of Dataset Refinement for Problems in Computer Vision Datasets
Zhijing Wan
Zhixiang Wang
CheukTing Chung
Zheng Wang
33
8
0
21 Oct 2022
Automatic Document Selection for Efficient Encoder Pretraining
Automatic Document Selection for Efficient Encoder Pretraining
Yukun Feng
Patrick Xia
Benjamin Van Durme
João Sedoc
44
7
0
20 Oct 2022
Previous
123
Next