ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2310.12168
17
1

RK-core: An Established Methodology for Exploring the Hierarchical Structure within Datasets

10 October 2023
Yao Lu
Yutian Huang
Jiaqi Nie
Zuohui Chen
Qi Xuan
ArXivPDFHTML
Abstract

Recently, the field of machine learning has undergone a transition from model-centric to data-centric. The advancements in diverse learning tasks have been propelled by the accumulation of more extensive datasets, subsequently facilitating the training of larger models on these datasets. However, these datasets remain relatively under-explored. To this end, we introduce a pioneering approach known as RK-core, to empower gaining a deeper understanding of the intricate hierarchical structure within datasets. Across several benchmark datasets, we find that samples with low coreness values appear less representative of their respective categories, and conversely, those with high coreness values exhibit greater representativeness. Correspondingly, samples with high coreness values make a more substantial contribution to the performance in comparison to those with low coreness values. Building upon this, we further employ RK-core to analyze the hierarchical structure of samples with different coreset selection methods. Remarkably, we find that a high-quality coreset should exhibit hierarchical diversity instead of solely opting for representative samples. The code is available at https://github.com/yaolu-zjut/Kcore.

View on arXiv
Comments on this paper