ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2302.13539
11
87

Finding Support Examples for In-Context Learning

27 February 2023
Xiaonan Li
Xipeng Qiu
ArXivPDFHTML
Abstract

Additionally, the strong dependency among in-context examples makes it an NP-hard combinatorial optimization problem and enumerating all permutations is infeasible. Hence we propose LENS, a fiLter-thEN-Search method to tackle this challenge in two stages: First we filter the dataset to obtain informative in-context examples individually. Specifically, we propose a novel metric, InfoScore, to evaluate the example's in-context informativeness based on the language model's feedback, and further propose a progressive filtering process to filter out uninformative examples. Then we propose diversity-guided example search which iteratively refines and evaluates the selected example permutations, to find examples that fully depict the task. The experimental results show that LENS significantly outperforms a wide range of baselines.

View on arXiv
Comments on this paper