ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2012.07244
  4. Cited By
Bayesian Neural Ordinary Differential Equations
v1v2v3v4 (latest)

Bayesian Neural Ordinary Differential Equations

14 December 2020
Raj Dandekar
Karen Chung
Vaibhav Dixit
Mohamed Tarek
Aslan Garcia-Valadez
Krishna Vishal Vemula
Chris Rackauckas
    UQCVOODBDL
ArXiv (abs)PDFHTML

Papers citing "Bayesian Neural Ordinary Differential Equations"

19 / 19 papers shown
Title
Uncertainty quantification of neural network models of evolving processes via Langevin sampling
Uncertainty quantification of neural network models of evolving processes via Langevin sampling
Cosmin Safta
Reese E. Jones
Ravi G. Patel
Raelynn Wonnacot
Dan S. Bolintineanu
Craig M. Hamel
S. Kramer
BDL
109
0
0
21 Apr 2025
Beyond Predictions in Neural ODEs: Identification and Interventions
Beyond Predictions in Neural ODEs: Identification and Interventions
H. Aliee
Fabian J. Theis
Niki Kilbertus
CML
101
25
0
23 Jun 2021
Hands-on Bayesian Neural Networks -- a Tutorial for Deep Learning Users
Hands-on Bayesian Neural Networks -- a Tutorial for Deep Learning Users
Laurent Valentin Jospin
Wray Buntine
F. Boussaïd
Hamid Laga
Bennamoun
OODBDLUQCV
86
629
0
14 Jul 2020
Bayesian Hidden Physics Models: Uncertainty Quantification for Discovery
  of Nonlinear Partial Differential Operators from Data
Bayesian Hidden Physics Models: Uncertainty Quantification for Discovery of Nonlinear Partial Differential Operators from Data
Steven Atkinson
40
8
0
07 Jun 2020
Universal Differential Equations for Scientific Machine Learning
Universal Differential Equations for Scientific Machine Learning
Christopher Rackauckas
Yingbo Ma
Julius Martensen
Collin Warner
K. Zubov
R. Supekar
Dominic J. Skinner
Ali Ramadhan
Alan Edelman
AI4CE
91
597
0
13 Jan 2020
Differential Bayesian Neural Nets
Differential Bayesian Neural Nets
Andreas Look
M. Kandemir
BDLUQCV
42
8
0
02 Dec 2019
Subspace Inference for Bayesian Deep Learning
Subspace Inference for Bayesian Deep Learning
Pavel Izmailov
Wesley J. Maddox
Polina Kirichenko
T. Garipov
Dmitry Vetrov
A. Wilson
UQCVBDL
75
144
0
17 Jul 2019
ODE$^2$VAE: Deep generative second order ODEs with Bayesian neural
  networks
ODE2^22VAE: Deep generative second order ODEs with Bayesian neural networks
Çağatay Yıldız
Markus Heinonen
Harri Lähdesmäki
BDLDRL
71
88
0
27 May 2019
A Simple Baseline for Bayesian Uncertainty in Deep Learning
A Simple Baseline for Bayesian Uncertainty in Deep Learning
Wesley J. Maddox
T. Garipov
Pavel Izmailov
Dmitry Vetrov
A. Wilson
BDLUQCV
93
808
0
07 Feb 2019
A Comprehensive guide to Bayesian Convolutional Neural Network with
  Variational Inference
A Comprehensive guide to Bayesian Convolutional Neural Network with Variational Inference
Kumar Shridhar
F. Laumann
Marcus Liwicki
BDLUQCV
83
177
0
08 Jan 2019
Neural Ordinary Differential Equations
Neural Ordinary Differential Equations
T. Chen
Yulia Rubanova
J. Bettencourt
David Duvenaud
AI4CE
429
5,156
0
19 Jun 2018
Learning Model Reparametrizations: Implicit Variational Inference by
  Fitting MCMC distributions
Learning Model Reparametrizations: Implicit Variational Inference by Fitting MCMC distributions
Michalis K. Titsias
BDL
48
23
0
04 Aug 2017
Reinterpreting Importance-Weighted Autoencoders
Reinterpreting Importance-Weighted Autoencoders
Chris Cremer
Q. Morris
David Duvenaud
BDLFAtt
111
94
0
10 Apr 2017
Variational Inference with Normalizing Flows
Variational Inference with Normalizing Flows
Danilo Jimenez Rezende
S. Mohamed
DRLBDL
318
4,197
0
21 May 2015
Stochastic Gradient Hamiltonian Monte Carlo
Stochastic Gradient Hamiltonian Monte Carlo
Tianqi Chen
E. Fox
Carlos Guestrin
BDL
109
913
0
17 Feb 2014
Black Box Variational Inference
Black Box Variational Inference
Rajesh Ranganath
S. Gerrish
David M. Blei
DRLBDL
150
1,168
0
31 Dec 2013
Auto-Encoding Variational Bayes
Auto-Encoding Variational Bayes
Diederik P. Kingma
Max Welling
BDL
455
16,923
0
20 Dec 2013
Stochastic Variational Inference
Stochastic Variational Inference
Matt Hoffman
David M. Blei
Chong-Jun Wang
John Paisley
BDL
262
2,627
0
29 Jun 2012
The No-U-Turn Sampler: Adaptively Setting Path Lengths in Hamiltonian
  Monte Carlo
The No-U-Turn Sampler: Adaptively Setting Path Lengths in Hamiltonian Monte Carlo
Matthew D. Hoffman
Andrew Gelman
169
4,309
0
18 Nov 2011
1