Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2012.07244
Cited By
v1
v2
v3
v4 (latest)
Bayesian Neural Ordinary Differential Equations
14 December 2020
Raj Dandekar
Karen Chung
Vaibhav Dixit
Mohamed Tarek
Aslan Garcia-Valadez
Krishna Vishal Vemula
Chris Rackauckas
UQCV
OOD
BDL
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Bayesian Neural Ordinary Differential Equations"
19 / 19 papers shown
Title
Uncertainty quantification of neural network models of evolving processes via Langevin sampling
Cosmin Safta
Reese E. Jones
Ravi G. Patel
Raelynn Wonnacot
Dan S. Bolintineanu
Craig M. Hamel
S. Kramer
BDL
109
0
0
21 Apr 2025
Beyond Predictions in Neural ODEs: Identification and Interventions
H. Aliee
Fabian J. Theis
Niki Kilbertus
CML
101
25
0
23 Jun 2021
Hands-on Bayesian Neural Networks -- a Tutorial for Deep Learning Users
Laurent Valentin Jospin
Wray Buntine
F. Boussaïd
Hamid Laga
Bennamoun
OOD
BDL
UQCV
86
629
0
14 Jul 2020
Bayesian Hidden Physics Models: Uncertainty Quantification for Discovery of Nonlinear Partial Differential Operators from Data
Steven Atkinson
40
8
0
07 Jun 2020
Universal Differential Equations for Scientific Machine Learning
Christopher Rackauckas
Yingbo Ma
Julius Martensen
Collin Warner
K. Zubov
R. Supekar
Dominic J. Skinner
Ali Ramadhan
Alan Edelman
AI4CE
91
597
0
13 Jan 2020
Differential Bayesian Neural Nets
Andreas Look
M. Kandemir
BDL
UQCV
42
8
0
02 Dec 2019
Subspace Inference for Bayesian Deep Learning
Pavel Izmailov
Wesley J. Maddox
Polina Kirichenko
T. Garipov
Dmitry Vetrov
A. Wilson
UQCV
BDL
75
144
0
17 Jul 2019
ODE
2
^2
2
VAE: Deep generative second order ODEs with Bayesian neural networks
Çağatay Yıldız
Markus Heinonen
Harri Lähdesmäki
BDL
DRL
71
88
0
27 May 2019
A Simple Baseline for Bayesian Uncertainty in Deep Learning
Wesley J. Maddox
T. Garipov
Pavel Izmailov
Dmitry Vetrov
A. Wilson
BDL
UQCV
93
808
0
07 Feb 2019
A Comprehensive guide to Bayesian Convolutional Neural Network with Variational Inference
Kumar Shridhar
F. Laumann
Marcus Liwicki
BDL
UQCV
83
177
0
08 Jan 2019
Neural Ordinary Differential Equations
T. Chen
Yulia Rubanova
J. Bettencourt
David Duvenaud
AI4CE
417
5,156
0
19 Jun 2018
Learning Model Reparametrizations: Implicit Variational Inference by Fitting MCMC distributions
Michalis K. Titsias
BDL
48
23
0
04 Aug 2017
Reinterpreting Importance-Weighted Autoencoders
Chris Cremer
Q. Morris
David Duvenaud
BDL
FAtt
111
94
0
10 Apr 2017
Variational Inference with Normalizing Flows
Danilo Jimenez Rezende
S. Mohamed
DRL
BDL
318
4,197
0
21 May 2015
Stochastic Gradient Hamiltonian Monte Carlo
Tianqi Chen
E. Fox
Carlos Guestrin
BDL
109
913
0
17 Feb 2014
Black Box Variational Inference
Rajesh Ranganath
S. Gerrish
David M. Blei
DRL
BDL
150
1,168
0
31 Dec 2013
Auto-Encoding Variational Bayes
Diederik P. Kingma
Max Welling
BDL
455
16,923
0
20 Dec 2013
Stochastic Variational Inference
Matt Hoffman
David M. Blei
Chong-Jun Wang
John Paisley
BDL
262
2,627
0
29 Jun 2012
The No-U-Turn Sampler: Adaptively Setting Path Lengths in Hamiltonian Monte Carlo
Matthew D. Hoffman
Andrew Gelman
169
4,309
0
18 Nov 2011
1