ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2011.12659
  4. Cited By
Unsupervised learning of disentangled representations in deep restricted
  kernel machines with orthogonality constraints

Unsupervised learning of disentangled representations in deep restricted kernel machines with orthogonality constraints

25 November 2020
F. Tonin
Panagiotis Patrinos
Johan A. K. Suykens
    DRLOOD
ArXiv (abs)PDFHTML

Papers citing "Unsupervised learning of disentangled representations in deep restricted kernel machines with orthogonality constraints"

17 / 17 papers shown
Title
Robust Generative Restricted Kernel Machines using Weighted Conjugate
  Feature Duality
Robust Generative Restricted Kernel Machines using Weighted Conjugate Feature Duality
Arun Pandey
J. Schreurs
Johan A. K. Suykens
31
7
0
04 Feb 2020
Generative Restricted Kernel Machines: A Framework for Multi-view
  Generation and Disentangled Feature Learning
Generative Restricted Kernel Machines: A Framework for Multi-view Generation and Disentangled Feature Learning
Arun Pandey
J. Schreurs
Johan A. K. Suykens
69
13
0
19 Jun 2019
Learning Interpretable Disentangled Representations using Adversarial
  VAEs
Learning Interpretable Disentangled Representations using Adversarial VAEs
Mhd Hasan Sarhan
Abouzar Eslami
Nassir Navab
Shadi Albarqouni
DRLOOD
133
21
0
17 Apr 2019
Challenging Common Assumptions in the Unsupervised Learning of
  Disentangled Representations
Challenging Common Assumptions in the Unsupervised Learning of Disentangled Representations
Francesco Locatello
Stefan Bauer
Mario Lucic
Gunnar Rätsch
Sylvain Gelly
Bernhard Schölkopf
Olivier Bachem
OOD
143
1,475
0
29 Nov 2018
Robustly Disentangled Causal Mechanisms: Validating Deep Representations
  for Interventional Robustness
Robustly Disentangled Causal Mechanisms: Validating Deep Representations for Interventional Robustness
Raphael Suter
Ðorðe Miladinovic
Bernhard Schölkopf
Stefan Bauer
CMLOODDRL
138
162
0
31 Oct 2018
Structured Disentangled Representations
Structured Disentangled Representations
Babak Esmaeili
Hao Wu
Sarthak Jain
Alican Bozkurt
N. Siddharth
Brooks Paige
Dana H. Brooks
Jennifer Dy
Jan-Willem van de Meent
OODCMLBDLDRL
88
169
0
06 Apr 2018
Disentangling by Factorising
Disentangling by Factorising
Hyunjik Kim
A. Mnih
CoGeOOD
70
1,356
0
16 Feb 2018
Learning Deep Disentangled Embeddings with the F-Statistic Loss
Learning Deep Disentangled Embeddings with the F-Statistic Loss
Karl Ridgeway
Michael C. Mozer
FedMLDRLCoGe
74
218
0
14 Feb 2018
Variational Inference of Disentangled Latent Concepts from Unlabeled
  Observations
Variational Inference of Disentangled Latent Concepts from Unlabeled Observations
Abhishek Kumar
P. Sattigeri
Avinash Balakrishnan
BDLDRL
93
523
0
02 Nov 2017
Emergence of Invariance and Disentanglement in Deep Representations
Emergence of Invariance and Disentanglement in Deep Representations
Alessandro Achille
Stefano Soatto
OODDRL
115
477
0
05 Jun 2017
InfoGAN: Interpretable Representation Learning by Information Maximizing
  Generative Adversarial Nets
InfoGAN: Interpretable Representation Learning by Information Maximizing Generative Adversarial Nets
Xi Chen
Yan Duan
Rein Houthooft
John Schulman
Ilya Sutskever
Pieter Abbeel
GAN
161
4,240
0
12 Jun 2016
Adam: A Method for Stochastic Optimization
Adam: A Method for Stochastic Optimization
Diederik P. Kingma
Jimmy Ba
ODL
2.1K
150,433
0
22 Dec 2014
Maximally Informative Hierarchical Representations of High-Dimensional
  Data
Maximally Informative Hierarchical Representations of High-Dimensional Data
Greg Ver Steeg
Aram Galstyan
TPM
109
65
0
27 Oct 2014
Auto-Encoding Variational Bayes
Auto-Encoding Variational Bayes
Diederik P. Kingma
Max Welling
BDL
464
16,922
0
20 Dec 2013
Visualizing and Understanding Convolutional Networks
Visualizing and Understanding Convolutional Networks
Matthew D. Zeiler
Rob Fergus
FAttSSL
605
15,907
0
12 Nov 2013
On Causal and Anticausal Learning
On Causal and Anticausal Learning
Bernhard Schölkopf
Dominik Janzing
J. Peters
Eleni Sgouritsa
Kun Zhang
Joris Mooij
CML
100
612
0
27 Jun 2012
Representation Learning: A Review and New Perspectives
Representation Learning: A Review and New Perspectives
Yoshua Bengio
Aaron Courville
Pascal Vincent
OODSSL
286
12,467
0
24 Jun 2012
1