ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2011.12087
  4. Cited By
A Convenient Infinite Dimensional Framework for Generative Adversarial
  Learning

A Convenient Infinite Dimensional Framework for Generative Adversarial Learning

24 November 2020
H. Asatryan
Hanno Gottschalk
Marieke Lippert
Matthias Rottmann
    GAN
ArXivPDFHTML

Papers citing "A Convenient Infinite Dimensional Framework for Generative Adversarial Learning"

17 / 17 papers shown
Title
Beyond $\mathcal{H}$-Divergence: Domain Adaptation Theory With
  Jensen-Shannon Divergence
Beyond H\mathcal{H}H-Divergence: Domain Adaptation Theory With Jensen-Shannon Divergence
Changjian Shui
Qi Chen
Jun Wen
Fan Zhou
Christian Gagné
Boyu Wang
57
22
0
30 Jul 2020
Coupling-based Invertible Neural Networks Are Universal Diffeomorphism
  Approximators
Coupling-based Invertible Neural Networks Are Universal Diffeomorphism Approximators
Takeshi Teshima
Isao Ishikawa
Koichi Tojo
Kenta Oono
Masahiro Ikeda
Masashi Sugiyama
39
110
0
20 Jun 2020
Distribution Approximation and Statistical Estimation Guarantees of
  Generative Adversarial Networks
Distribution Approximation and Statistical Estimation Guarantees of Generative Adversarial Networks
Minshuo Chen
Wenjing Liao
H. Zha
Tuo Zhao
43
15
0
10 Feb 2020
An Introduction to Variational Autoencoders
An Introduction to Variational Autoencoders
Diederik P. Kingma
Max Welling
BDL
SSL
DRL
63
2,322
0
06 Jun 2019
Nonparametric Density Estimation & Convergence Rates for GANs under
  Besov IPM Losses
Nonparametric Density Estimation & Convergence Rates for GANs under Besov IPM Losses
Ananya Uppal
Shashank Singh
Barnabás Póczós
45
52
0
09 Feb 2019
Large Scale GAN Training for High Fidelity Natural Image Synthesis
Large Scale GAN Training for High Fidelity Natural Image Synthesis
Andrew Brock
Jeff Donahue
Karen Simonyan
213
5,363
0
28 Sep 2018
Equivalence of approximation by convolutional neural networks and
  fully-connected networks
Equivalence of approximation by convolutional neural networks and fully-connected networks
P. Petersen
Felix Voigtländer
43
78
0
04 Sep 2018
Nonparametric Density Estimation under Adversarial Losses
Nonparametric Density Estimation under Adversarial Losses
Shashank Singh
Ananya Uppal
Boyue Li
Chun-Liang Li
Manzil Zaheer
Barnabás Póczós
GAN
54
56
0
22 May 2018
Universal approximations of invariant maps by neural networks
Universal approximations of invariant maps by neural networks
Dmitry Yarotsky
60
210
0
26 Apr 2018
Some Theoretical Properties of GANs
Some Theoretical Properties of GANs
Gérard Biau
B. Cadre
Maxime Sangnier
Ugo Tanielian
GAN
32
51
0
21 Mar 2018
Optimal approximation of piecewise smooth functions using deep ReLU
  neural networks
Optimal approximation of piecewise smooth functions using deep ReLU neural networks
P. Petersen
Felix Voigtländer
152
472
0
15 Sep 2017
Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial
  Networks
Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks
Jun-Yan Zhu
Taesung Park
Phillip Isola
Alexei A. Efros
GAN
89
5,556
0
30 Mar 2017
Error bounds for approximations with deep ReLU networks
Error bounds for approximations with deep ReLU networks
Dmitry Yarotsky
128
1,226
0
03 Oct 2016
Photo-Realistic Single Image Super-Resolution Using a Generative
  Adversarial Network
Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network
C. Ledig
Lucas Theis
Ferenc Huszár
Jose Caballero
Andrew Cunningham
...
Andrew P. Aitken
Alykhan Tejani
J. Totz
Zehan Wang
Wenzhe Shi
GAN
229
10,646
0
15 Sep 2016
Unsupervised Representation Learning with Deep Convolutional Generative
  Adversarial Networks
Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks
Alec Radford
Luke Metz
Soumith Chintala
GAN
OOD
226
13,968
0
19 Nov 2015
NICE: Non-linear Independent Components Estimation
NICE: Non-linear Independent Components Estimation
Laurent Dinh
David M. Krueger
Yoshua Bengio
DRL
BDL
91
2,246
0
30 Oct 2014
Generative Adversarial Networks
Generative Adversarial Networks
Ian Goodfellow
Jean Pouget-Abadie
M. Berk Mirza
Bing Xu
David Warde-Farley
Sherjil Ozair
Aaron Courville
Yoshua Bengio
GAN
124
2,191
0
10 Jun 2014
1