111
5554

Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks

Abstract

Image-to-image translation is a class of vision and graphics problems where the goal is to learn the mapping between an input image and an output image using a training set of aligned image pairs. However, for many tasks, paired training data will not be available. We present an approach for learning to translate an image from a source domain XX to a target domain YY in the absence of paired examples. Our goal is to learn a mapping G:XYG: X \rightarrow Y such that the distribution of images from G(X)G(X) is indistinguishable from the distribution YY using an adversarial loss. Because this mapping is highly under-constrained, we couple it with an inverse mapping F:YXF: Y \rightarrow X and introduce a cycle consistency loss to push F(G(X))XF(G(X)) \approx X (and vice versa). Qualitative results are presented on several tasks where paired training data does not exist, including collection style transfer, object transfiguration, season transfer, photo enhancement, etc. Quantitative comparisons against several prior methods demonstrate the superiority of our approach.

View on arXiv
Comments on this paper

We use cookies and other tracking technologies to improve your browsing experience on our website, to show you personalized content and targeted ads, to analyze our website traffic, and to understand where our visitors are coming from. See our policy.