ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2011.09588
  4. Cited By
Beyond Pinball Loss: Quantile Methods for Calibrated Uncertainty
  Quantification

Beyond Pinball Loss: Quantile Methods for Calibrated Uncertainty Quantification

18 November 2020
Youngseog Chung
Willie Neiswanger
I. Char
J. Schneider
    UQCV
ArXivPDFHTML

Papers citing "Beyond Pinball Loss: Quantile Methods for Calibrated Uncertainty Quantification"

30 / 30 papers shown
Title
GETS: Ensemble Temperature Scaling for Calibration in Graph Neural Networks
GETS: Ensemble Temperature Scaling for Calibration in Graph Neural Networks
Dingyi Zhuang
Chonghe Jiang
Yunhan Zheng
Shenhao Wang
Jinhua Zhao
UQCV
74
0
0
12 Oct 2024
Relaxed Quantile Regression: Prediction Intervals for Asymmetric Noise
Relaxed Quantile Regression: Prediction Intervals for Asymmetric Noise
T. Pouplin
Alan Jeffares
Nabeel Seedat
Mihaela van der Schaar
244
3
0
05 Jun 2024
Uncertainty Toolbox: an Open-Source Library for Assessing, Visualizing,
  and Improving Uncertainty Quantification
Uncertainty Toolbox: an Open-Source Library for Assessing, Visualizing, and Improving Uncertainty Quantification
Youngseog Chung
I. Char
Han Guo
J. Schneider
Willie Neiswanger
56
71
0
21 Sep 2021
Prediction Intervals: Split Normal Mixture from Quality-Driven Deep
  Ensembles
Prediction Intervals: Split Normal Mixture from Quality-Driven Deep Ensembles
Tárik S. Salem
H. Langseth
H. Ramampiaro
UQCV
48
36
0
19 Jul 2020
Neural Dynamical Systems: Balancing Structure and Flexibility in
  Physical Prediction
Neural Dynamical Systems: Balancing Structure and Flexibility in Physical Prediction
Viraj Mehta
I. Char
Willie Neiswanger
Youngseog Chung
A. Nelson
M. Boyer
E. Kolemen
J. Schneider
AI4CE
25
28
0
23 Jun 2020
Individual Calibration with Randomized Forecasting
Individual Calibration with Randomized Forecasting
Shengjia Zhao
Tengyu Ma
Stefano Ermon
31
59
0
18 Jun 2020
Calibrated Reliable Regression using Maximum Mean Discrepancy
Calibrated Reliable Regression using Maximum Mean Discrepancy
Peng Cui
Wenbo Hu
Jun Zhu
UQCV
33
47
0
18 Jun 2020
MOPO: Model-based Offline Policy Optimization
MOPO: Model-based Offline Policy Optimization
Tianhe Yu
G. Thomas
Lantao Yu
Stefano Ermon
James Zou
Sergey Levine
Chelsea Finn
Tengyu Ma
OffRL
65
759
0
27 May 2020
Offline Contextual Bayesian Optimization for Nuclear Fusion
Offline Contextual Bayesian Optimization for Nuclear Fusion
Youngseog Chung
I. Char
Willie Neiswanger
Kirthevasan Kandasamy
Oakleigh Nelson
M. Boyer
E. Kolemen
J. Schneider
OffRL
AI4CE
44
13
0
06 Jan 2020
Accurate Uncertainty Estimation and Decomposition in Ensemble Learning
Accurate Uncertainty Estimation and Decomposition in Ensemble Learning
J. Liu
John Paisley
M. Kioumourtzoglou
B. Coull
UQCV
UD
PER
61
84
0
11 Nov 2019
Calibrated Model-Based Deep Reinforcement Learning
Calibrated Model-Based Deep Reinforcement Learning
Ali Malik
Volodymyr Kuleshov
Jiaming Song
Danny Nemer
Harlan Seymour
Stefano Ermon
97
55
0
19 Jun 2019
Reliable training and estimation of variance networks
Reliable training and estimation of variance networks
N. Detlefsen
Martin Jørgensen
Søren Hauberg
UQCV
35
86
0
04 Jun 2019
Distribution Calibration for Regression
Distribution Calibration for Regression
Hao Song
Tom Diethe
Meelis Kull
Peter A. Flach
UQCV
111
110
0
15 May 2019
A Simple Baseline for Bayesian Uncertainty in Deep Learning
A Simple Baseline for Bayesian Uncertainty in Deep Learning
Wesley J. Maddox
T. Garipov
Pavel Izmailov
Dmitry Vetrov
A. Wilson
BDL
UQCV
74
804
0
07 Feb 2019
Uncertainty in Neural Networks: Approximately Bayesian Ensembling
Uncertainty in Neural Networks: Approximately Bayesian Ensembling
Tim Pearce
Felix Leibfried
Alexandra Brintrup
Mohamed H. Zaki
A. Neely
BDL
UQCV
44
192
0
12 Oct 2018
Beyond expectation: Deep joint mean and quantile regression for
  spatio-temporal problems
Beyond expectation: Deep joint mean and quantile regression for spatio-temporal problems
Filipe Rodrigues
Francisco Câmara Pereira
AI4TS
50
95
0
27 Aug 2018
Accurate Uncertainties for Deep Learning Using Calibrated Regression
Accurate Uncertainties for Deep Learning Using Calibrated Regression
Volodymyr Kuleshov
Nathan Fenner
Stefano Ermon
BDL
UQCV
142
626
0
01 Jul 2018
Deep Reinforcement Learning in a Handful of Trials using Probabilistic
  Dynamics Models
Deep Reinforcement Learning in a Handful of Trials using Probabilistic Dynamics Models
Kurtland Chua
Roberto Calandra
R. McAllister
Sergey Levine
BDL
166
1,263
0
30 May 2018
High-Quality Prediction Intervals for Deep Learning: A
  Distribution-Free, Ensembled Approach
High-Quality Prediction Intervals for Deep Learning: A Distribution-Free, Ensembled Approach
Tim Pearce
Mohamed H. Zaki
Alexandra Brintrup
A. Neely
UQCV
59
276
0
20 Feb 2018
Calibration for the (Computationally-Identifiable) Masses
Calibration for the (Computationally-Identifiable) Masses
Úrsula Hébert-Johnson
Michael P. Kim
Omer Reingold
G. Rothblum
FaML
48
87
0
22 Nov 2017
Fast calibrated additive quantile regression
Fast calibrated additive quantile regression
Matteo Fasiolo
S. Wood
Margaux Zaffran
Raphael Nedellec
Y. Goude
36
195
0
11 Jul 2017
On Calibration of Modern Neural Networks
On Calibration of Modern Neural Networks
Chuan Guo
Geoff Pleiss
Yu Sun
Kilian Q. Weinberger
UQCV
199
5,774
0
14 Jun 2017
Simple and Scalable Predictive Uncertainty Estimation using Deep
  Ensembles
Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles
Balaji Lakshminarayanan
Alexander Pritzel
Charles Blundell
UQCV
BDL
493
5,748
0
05 Dec 2016
Inherent Trade-Offs in the Fair Determination of Risk Scores
Inherent Trade-Offs in the Fair Determination of Risk Scores
Jon M. Kleinberg
S. Mullainathan
Manish Raghavan
FaML
84
1,762
0
19 Sep 2016
Dropout as a Bayesian Approximation: Representing Model Uncertainty in
  Deep Learning
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCV
BDL
476
9,233
0
06 Jun 2015
Weight Uncertainty in Neural Networks
Weight Uncertainty in Neural Networks
Charles Blundell
Julien Cornebise
Koray Kavukcuoglu
Daan Wierstra
UQCV
BDL
117
1,878
0
20 May 2015
Probabilistic Backpropagation for Scalable Learning of Bayesian Neural
  Networks
Probabilistic Backpropagation for Scalable Learning of Bayesian Neural Networks
José Miguel Hernández-Lobato
Ryan P. Adams
UQCV
BDL
64
940
0
18 Feb 2015
Safe Exploration of State and Action Spaces in Reinforcement Learning
Safe Exploration of State and Action Spaces in Reinforcement Learning
Javier García
Fernando Fernández
53
163
0
04 Feb 2014
Fast Nonparametric Conditional Density Estimation
Fast Nonparametric Conditional Density Estimation
Michael P. Holmes
Alexander G. Gray
Charles Isbell
59
79
0
20 Jun 2012
Estimating conditional quantiles with the help of the pinball loss
Estimating conditional quantiles with the help of the pinball loss
Ingo Steinwart
A. Christmann
78
240
0
10 Feb 2011
1