Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2011.09588
Cited By
Beyond Pinball Loss: Quantile Methods for Calibrated Uncertainty Quantification
18 November 2020
Youngseog Chung
Willie Neiswanger
I. Char
J. Schneider
UQCV
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Beyond Pinball Loss: Quantile Methods for Calibrated Uncertainty Quantification"
30 / 30 papers shown
Title
GETS: Ensemble Temperature Scaling for Calibration in Graph Neural Networks
Dingyi Zhuang
Chonghe Jiang
Yunhan Zheng
Shenhao Wang
Jinhua Zhao
UQCV
72
0
0
12 Oct 2024
Relaxed Quantile Regression: Prediction Intervals for Asymmetric Noise
T. Pouplin
Alan Jeffares
Nabeel Seedat
Mihaela van der Schaar
238
3
0
05 Jun 2024
Uncertainty Toolbox: an Open-Source Library for Assessing, Visualizing, and Improving Uncertainty Quantification
Youngseog Chung
I. Char
Han Guo
J. Schneider
Willie Neiswanger
51
71
0
21 Sep 2021
Prediction Intervals: Split Normal Mixture from Quality-Driven Deep Ensembles
Tárik S. Salem
H. Langseth
H. Ramampiaro
UQCV
48
36
0
19 Jul 2020
Neural Dynamical Systems: Balancing Structure and Flexibility in Physical Prediction
Viraj Mehta
I. Char
Willie Neiswanger
Youngseog Chung
A. Nelson
M. Boyer
E. Kolemen
J. Schneider
AI4CE
22
28
0
23 Jun 2020
Individual Calibration with Randomized Forecasting
Shengjia Zhao
Tengyu Ma
Stefano Ermon
31
59
0
18 Jun 2020
Calibrated Reliable Regression using Maximum Mean Discrepancy
Peng Cui
Wenbo Hu
Jun Zhu
UQCV
30
47
0
18 Jun 2020
MOPO: Model-based Offline Policy Optimization
Tianhe Yu
G. Thomas
Lantao Yu
Stefano Ermon
James Zou
Sergey Levine
Chelsea Finn
Tengyu Ma
OffRL
65
759
0
27 May 2020
Offline Contextual Bayesian Optimization for Nuclear Fusion
Youngseog Chung
I. Char
Willie Neiswanger
Kirthevasan Kandasamy
Oakleigh Nelson
M. Boyer
E. Kolemen
J. Schneider
OffRL
AI4CE
41
13
0
06 Jan 2020
Accurate Uncertainty Estimation and Decomposition in Ensemble Learning
J. Liu
John Paisley
M. Kioumourtzoglou
B. Coull
UQCV
UD
PER
58
84
0
11 Nov 2019
Calibrated Model-Based Deep Reinforcement Learning
Ali Malik
Volodymyr Kuleshov
Jiaming Song
Danny Nemer
Harlan Seymour
Stefano Ermon
94
55
0
19 Jun 2019
Reliable training and estimation of variance networks
N. Detlefsen
Martin Jørgensen
Søren Hauberg
UQCV
35
86
0
04 Jun 2019
Distribution Calibration for Regression
Hao Song
Tom Diethe
Meelis Kull
Peter A. Flach
UQCV
108
110
0
15 May 2019
A Simple Baseline for Bayesian Uncertainty in Deep Learning
Wesley J. Maddox
T. Garipov
Pavel Izmailov
Dmitry Vetrov
A. Wilson
BDL
UQCV
74
804
0
07 Feb 2019
Uncertainty in Neural Networks: Approximately Bayesian Ensembling
Tim Pearce
Felix Leibfried
Alexandra Brintrup
Mohamed H. Zaki
A. Neely
BDL
UQCV
44
192
0
12 Oct 2018
Beyond expectation: Deep joint mean and quantile regression for spatio-temporal problems
Filipe Rodrigues
Francisco Câmara Pereira
AI4TS
33
95
0
27 Aug 2018
Accurate Uncertainties for Deep Learning Using Calibrated Regression
Volodymyr Kuleshov
Nathan Fenner
Stefano Ermon
BDL
UQCV
140
626
0
01 Jul 2018
Deep Reinforcement Learning in a Handful of Trials using Probabilistic Dynamics Models
Kurtland Chua
Roberto Calandra
R. McAllister
Sergey Levine
BDL
166
1,263
0
30 May 2018
High-Quality Prediction Intervals for Deep Learning: A Distribution-Free, Ensembled Approach
Tim Pearce
Mohamed H. Zaki
Alexandra Brintrup
A. Neely
UQCV
53
276
0
20 Feb 2018
Calibration for the (Computationally-Identifiable) Masses
Úrsula Hébert-Johnson
Michael P. Kim
Omer Reingold
G. Rothblum
FaML
45
87
0
22 Nov 2017
Fast calibrated additive quantile regression
Matteo Fasiolo
S. Wood
Margaux Zaffran
Raphael Nedellec
Y. Goude
28
195
0
11 Jul 2017
On Calibration of Modern Neural Networks
Chuan Guo
Geoff Pleiss
Yu Sun
Kilian Q. Weinberger
UQCV
195
5,774
0
14 Jun 2017
Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles
Balaji Lakshminarayanan
Alexander Pritzel
Charles Blundell
UQCV
BDL
482
5,748
0
05 Dec 2016
Inherent Trade-Offs in the Fair Determination of Risk Scores
Jon M. Kleinberg
S. Mullainathan
Manish Raghavan
FaML
84
1,762
0
19 Sep 2016
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCV
BDL
465
9,233
0
06 Jun 2015
Weight Uncertainty in Neural Networks
Charles Blundell
Julien Cornebise
Koray Kavukcuoglu
Daan Wierstra
UQCV
BDL
111
1,878
0
20 May 2015
Probabilistic Backpropagation for Scalable Learning of Bayesian Neural Networks
José Miguel Hernández-Lobato
Ryan P. Adams
UQCV
BDL
64
940
0
18 Feb 2015
Safe Exploration of State and Action Spaces in Reinforcement Learning
Javier García
Fernando Fernández
53
163
0
04 Feb 2014
Fast Nonparametric Conditional Density Estimation
Michael P. Holmes
Alexander G. Gray
Charles Isbell
54
79
0
20 Jun 2012
Estimating conditional quantiles with the help of the pinball loss
Ingo Steinwart
A. Christmann
72
240
0
10 Feb 2011
1