ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2011.09384
  4. Cited By
Introduction to Core-sets: an Updated Survey

Introduction to Core-sets: an Updated Survey

18 November 2020
Dan Feldman
ArXivPDFHTML

Papers citing "Introduction to Core-sets: an Updated Survey"

36 / 36 papers shown
Title
Data Selection for ERMs
Data Selection for ERMs
Steve Hanneke
Shay Moran
Alexander Shlimovich
Amir Yehudayoff
31
0
0
20 Apr 2025
Ordered Semantically Diverse Sampling for Textual Data
A. Tiwari
Mukul Singh
Ananya Singha
Arjun Radhakrishna
31
0
0
12 Mar 2025
Does Training with Synthetic Data Truly Protect Privacy?
Does Training with Synthetic Data Truly Protect Privacy?
Yunpeng Zhao
Jie Zhang
82
0
0
18 Feb 2025
Decomposed Distribution Matching in Dataset Condensation
Decomposed Distribution Matching in Dataset Condensation
Sahar Rahimi Malakshan
Mohammad Saeed Ebrahimi Saadabadi
Ali Dabouei
Nasser M. Nasrabadi
DD
76
1
0
06 Dec 2024
Theoretically Grounded Pruning of Large Ground Sets for Constrained,
  Discrete Optimization
Theoretically Grounded Pruning of Large Ground Sets for Constrained, Discrete Optimization
Ankur Nath
Alan Kuhnle
24
0
0
23 Oct 2024
Unsupervised Domain Adaptation Via Data Pruning
Unsupervised Domain Adaptation Via Data Pruning
Andrea Napoli
Paul White
36
1
0
18 Sep 2024
Using Low-Discrepancy Points for Data Compression in Machine Learning:
  An Experimental Comparison
Using Low-Discrepancy Points for Data Compression in Machine Learning: An Experimental Comparison
Simone Göttlich
Jacob Heieck
Andreas Neuenkirch
26
0
0
10 Jul 2024
General bounds on the quality of Bayesian coresets
General bounds on the quality of Bayesian coresets
Trevor Campbell
61
2
0
20 May 2024
Online Algorithms with Limited Data Retention
Online Algorithms with Limited Data Retention
Nicole Immorlica
Brendan Lucier
Markus Mobius
James Siderius
40
1
0
17 Apr 2024
Settling Time vs. Accuracy Tradeoffs for Clustering Big Data
Settling Time vs. Accuracy Tradeoffs for Clustering Big Data
Andrew Draganov
David Saulpic
Chris Schwiegelshohn
27
5
0
02 Apr 2024
Unknown Domain Inconsistency Minimization for Domain Generalization
Unknown Domain Inconsistency Minimization for Domain Generalization
Seungjae Shin
Heesun Bae
Byeonghu Na
Yoon-Yeong Kim
Il-Chul Moon
39
2
0
12 Mar 2024
MIM4DD: Mutual Information Maximization for Dataset Distillation
MIM4DD: Mutual Information Maximization for Dataset Distillation
Yuzhang Shang
Zhihang Yuan
Yan Yan
DD
40
14
0
27 Dec 2023
Simple, Scalable and Effective Clustering via One-Dimensional
  Projections
Simple, Scalable and Effective Clustering via One-Dimensional Projections
Moses Charikar
Monika Henzinger
Lunjia Hu
Maximilian Vötsch
Erik Waingarten
16
2
0
25 Oct 2023
Coreset selection can accelerate quantum machine learning models with
  provable generalization
Coreset selection can accelerate quantum machine learning models with provable generalization
Yiming Huang
Huiyuan Wang
Yuxuan Du
Xiao Yuan
48
1
0
19 Sep 2023
Anchor Points: Benchmarking Models with Much Fewer Examples
Anchor Points: Benchmarking Models with Much Fewer Examples
Rajan Vivek
Kawin Ethayarajh
Diyi Yang
Douwe Kiela
ALM
29
22
0
14 Sep 2023
Composable Core-sets for Diversity Approximation on Multi-Dataset
  Streams
Composable Core-sets for Diversity Approximation on Multi-Dataset Streams
Stephanie Wang
Michael Flynn
Fangyu Luo
17
0
0
10 Aug 2023
Improved Distribution Matching for Dataset Condensation
Improved Distribution Matching for Dataset Condensation
Ganlong Zhao
Guanbin Li
Yipeng Qin
Yizhou Yu
DD
31
80
0
19 Jul 2023
Dataset Distillation Meets Provable Subset Selection
Dataset Distillation Meets Provable Subset Selection
M. Tukan
Alaa Maalouf
Margarita Osadchy
DD
39
4
0
16 Jul 2023
Machine Learning and the Future of Bayesian Computation
Machine Learning and the Future of Bayesian Computation
Steven Winter
Trevor Campbell
Lizhen Lin
Sanvesh Srivastava
David B. Dunson
TPM
47
4
0
21 Apr 2023
Visual DNA: Representing and Comparing Images using Distributions of
  Neuron Activations
Visual DNA: Representing and Comparing Images using Distributions of Neuron Activations
Benjamin Ramtoula
Matthew Gadd
Paul Newman
D. Martini
31
10
0
20 Apr 2023
Data-Efficient Training of CNNs and Transformers with Coresets: A
  Stability Perspective
Data-Efficient Training of CNNs and Transformers with Coresets: A Stability Perspective
Animesh Gupta
Irtiza Hassan
Dilip K. Prasad
D. K. Gupta
21
2
0
03 Mar 2023
Dataset Distillation: A Comprehensive Review
Dataset Distillation: A Comprehensive Review
Ruonan Yu
Songhua Liu
Xinchao Wang
DD
53
121
0
17 Jan 2023
Training Data Influence Analysis and Estimation: A Survey
Training Data Influence Analysis and Estimation: A Survey
Zayd Hammoudeh
Daniel Lowd
TDI
29
82
0
09 Dec 2022
Adversarial Coreset Selection for Efficient Robust Training
Adversarial Coreset Selection for Efficient Robust Training
H. M. Dolatabadi
S. Erfani
C. Leckie
AAML
8
7
0
13 Sep 2022
One-pass additive-error subset selection for $\ell_{p}$ subspace
  approximation
One-pass additive-error subset selection for ℓp\ell_{p}ℓp​ subspace approximation
Amit Deshpande
Rameshwar Pratap
21
4
0
26 Apr 2022
CAFE: Learning to Condense Dataset by Aligning Features
CAFE: Learning to Condense Dataset by Aligning Features
Kai Wang
Bo Zhao
Xiangyu Peng
Zheng Zhu
Shuo Yang
Shuo Wang
Guan Huang
Hakan Bilen
Xinchao Wang
Yang You
DD
37
0
0
03 Mar 2022
Submodularity In Machine Learning and Artificial Intelligence
Submodularity In Machine Learning and Artificial Intelligence
J. Bilmes
8
53
0
31 Jan 2022
$\ell_\infty$-Robustness and Beyond: Unleashing Efficient Adversarial
  Training
ℓ∞\ell_\inftyℓ∞​-Robustness and Beyond: Unleashing Efficient Adversarial Training
H. M. Dolatabadi
S. Erfani
C. Leckie
OOD
AAML
16
11
0
01 Dec 2021
A Unified Approach to Coreset Learning
A Unified Approach to Coreset Learning
Alaa Maalouf
Gilad Eini
Ben Mussay
Dan Feldman
Margarita Osadchy
DD
11
16
0
04 Nov 2021
Coresets for Time Series Clustering
Coresets for Time Series Clustering
Lingxiao Huang
K. Sudhir
Nisheeth K. Vishnoi
AI4TS
13
18
0
28 Oct 2021
Dimensionality Reduction for Wasserstein Barycenter
Dimensionality Reduction for Wasserstein Barycenter
Zachary Izzo
Sandeep Silwal
Samson Zhou
31
16
0
18 Oct 2021
Data Summarization via Bilevel Optimization
Data Summarization via Bilevel Optimization
Zalan Borsos
Mojmír Mutný
Marco Tagliasacchi
Andreas Krause
30
8
0
26 Sep 2021
Robust and Fully-Dynamic Coreset for Continuous-and-Bounded Learning
  (With Outliers) Problems
Robust and Fully-Dynamic Coreset for Continuous-and-Bounded Learning (With Outliers) Problems
Zixiu Wang
Yiwen Guo
Hu Ding
OOD
32
6
0
30 Jun 2021
Adversarial Robustness of Streaming Algorithms through Importance
  Sampling
Adversarial Robustness of Streaming Algorithms through Importance Sampling
Vladimir Braverman
Avinatan Hassidim
Yossi Matias
Mariano Schain
Sandeep Silwal
Samson Zhou
AAML
OOD
24
38
0
28 Jun 2021
Set Based Stochastic Subsampling
Set Based Stochastic Subsampling
Bruno Andreis
Seanie Lee
A. Nguyen
Juho Lee
Eunho Yang
Sung Ju Hwang
BDL
8
0
0
25 Jun 2020
Understanding collections of related datasets using dependent MMD
  coresets
Understanding collections of related datasets using dependent MMD coresets
Sinead Williamson
Jette Henderson
14
5
0
24 Jun 2020
1