ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2011.08877
  4. Cited By
Towards Improved and Interpretable Deep Metric Learning via Attentive
  Grouping

Towards Improved and Interpretable Deep Metric Learning via Attentive Grouping

17 November 2020
Xinyi Xu
Zhangyang Wang
Cheng Deng
Hao Yuan
Shuiwang Ji
    FedML
ArXivPDFHTML

Papers citing "Towards Improved and Interpretable Deep Metric Learning via Attentive Grouping"

26 / 26 papers shown
Title
MIXRTs: Toward Interpretable Multi-Agent Reinforcement Learning via Mixing Recurrent Soft Decision Trees
MIXRTs: Toward Interpretable Multi-Agent Reinforcement Learning via Mixing Recurrent Soft Decision Trees
Zichuan Liu
Zichuan Liu
Zhi Wang
Yuanyang Zhu
Chunlin Chen
133
6
0
15 Sep 2022
Kronecker Attention Networks
Kronecker Attention Networks
Hongyang Gao
Zhengyang Wang
Shuiwang Ji
26
33
0
16 Jul 2020
DiVA: Diverse Visual Feature Aggregation for Deep Metric Learning
DiVA: Diverse Visual Feature Aggregation for Deep Metric Learning
Timo Milbich
Karsten Roth
Homanga Bharadhwaj
Samarth Sinha
Yoshua Bengio
Bjorn Ommer
Joseph Paul Cohen
85
66
0
28 Apr 2020
A Metric Learning Reality Check
A Metric Learning Reality Check
Kevin Musgrave
Serge J. Belongie
Ser-Nam Lim
120
475
0
18 Mar 2020
Revisiting Training Strategies and Generalization Performance in Deep
  Metric Learning
Revisiting Training Strategies and Generalization Performance in Deep Metric Learning
Karsten Roth
Timo Milbich
Samarth Sinha
Prateek Gupta
Bjorn Ommer
Joseph Paul Cohen
45
170
0
19 Feb 2020
Hybrid-Attention based Decoupled Metric Learning for Zero-Shot Image
  Retrieval
Hybrid-Attention based Decoupled Metric Learning for Zero-Shot Image Retrieval
Binghui Chen
Weihong Deng
VLM
FedML
42
55
0
27 Jul 2019
Divide and Conquer the Embedding Space for Metric Learning
Divide and Conquer the Embedding Space for Metric Learning
A. Sanakoyeu
Vadim Tschernezki
U. Büchler
Bjorn Ommer
SSL
57
107
0
14 Jun 2019
Multi-Similarity Loss with General Pair Weighting for Deep Metric
  Learning
Multi-Similarity Loss with General Pair Weighting for Deep Metric Learning
Xun Wang
Xintong Han
Weilin Huang
Dengke Dong
Matthew R. Scott
44
742
0
14 Apr 2019
Hardness-Aware Deep Metric Learning
Hardness-Aware Deep Metric Learning
Wenzhao Zheng
Zhaodong Chen
Jiwen Lu
Jie Zhou
34
172
0
13 Mar 2019
Deep Randomized Ensembles for Metric Learning
Deep Randomized Ensembles for Metric Learning
Hong Xuan
Richard Souvenir
Robert Pless
UQCV
OOD
59
102
0
13 Aug 2018
Free-Form Image Inpainting with Gated Convolution
Free-Form Image Inpainting with Gated Convolution
Jiahui Yu
Zhe Lin
Jimei Yang
Xiaohui Shen
Xin Lu
Thomas Huang
DRL
43
1,707
0
10 Jun 2018
Attention-based Ensemble for Deep Metric Learning
Attention-based Ensemble for Deep Metric Learning
Wonsik Kim
Bhavya Goyal
Kunal Chawla
Jungmin Lee
Keunjoo Kwon
FedML
60
226
0
02 Apr 2018
Deep Metric Learning with BIER: Boosting Independent Embeddings Robustly
Deep Metric Learning with BIER: Boosting Independent Embeddings Robustly
M. Opitz
Georg Waltner
Horst Possegger
Horst Bischof
FedML
OOD
62
166
0
15 Jan 2018
Non-local Neural Networks
Non-local Neural Networks
Xinyu Wang
Ross B. Girshick
Abhinav Gupta
Kaiming He
OffRL
196
8,867
0
21 Nov 2017
Squeeze-and-Excitation Networks
Squeeze-and-Excitation Networks
Jie Hu
Li Shen
Samuel Albanie
Gang Sun
Enhua Wu
319
26,241
0
05 Sep 2017
Deep Metric Learning with Angular Loss
Deep Metric Learning with Angular Loss
Jian Wang
Feng Zhou
Shilei Wen
Xiao-Chang Liu
Yuanqing Lin
DML
53
503
0
04 Aug 2017
Bottom-Up and Top-Down Attention for Image Captioning and Visual
  Question Answering
Bottom-Up and Top-Down Attention for Image Captioning and Visual Question Answering
Peter Anderson
Xiaodong He
Chris Buehler
Damien Teney
Mark Johnson
Stephen Gould
Lei Zhang
AIMat
100
4,201
0
25 Jul 2017
Sampling Matters in Deep Embedding Learning
Sampling Matters in Deep Embedding Learning
Chaoxia Wu
R. Manmatha
Alex Smola
Philipp Krahenbuhl
82
921
0
23 Jun 2017
Attention Is All You Need
Attention Is All You Need
Ashish Vaswani
Noam M. Shazeer
Niki Parmar
Jakob Uszkoreit
Llion Jones
Aidan Gomez
Lukasz Kaiser
Illia Polosukhin
3DV
427
129,831
0
12 Jun 2017
Hard-Aware Deeply Cascaded Embedding
Hard-Aware Deeply Cascaded Embedding
Yuhui Yuan
Kuiyuan Yang
Chao Zhang
71
301
0
17 Nov 2016
Learning Deep Embeddings with Histogram Loss
Learning Deep Embeddings with Histogram Loss
E. Ustinova
Victor Lempitsky
81
350
0
02 Nov 2016
Deep Residual Learning for Image Recognition
Deep Residual Learning for Image Recognition
Kaiming He
Xinming Zhang
Shaoqing Ren
Jian Sun
MedIm
1.3K
192,638
0
10 Dec 2015
Deep Metric Learning via Lifted Structured Feature Embedding
Deep Metric Learning via Lifted Structured Feature Embedding
Hyun Oh Song
Yu Xiang
Stefanie Jegelka
Silvio Savarese
FedML
SSL
DML
70
1,641
0
19 Nov 2015
FaceNet: A Unified Embedding for Face Recognition and Clustering
FaceNet: A Unified Embedding for Face Recognition and Clustering
Florian Schroff
Dmitry Kalenichenko
James Philbin
3DH
266
13,079
0
12 Mar 2015
Adam: A Method for Stochastic Optimization
Adam: A Method for Stochastic Optimization
Diederik P. Kingma
Jimmy Ba
ODL
736
149,474
0
22 Dec 2014
Going Deeper with Convolutions
Going Deeper with Convolutions
Christian Szegedy
Wei Liu
Yangqing Jia
P. Sermanet
Scott E. Reed
Dragomir Anguelov
D. Erhan
Vincent Vanhoucke
Andrew Rabinovich
289
43,511
0
17 Sep 2014
1