ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2010.13070
  4. Cited By
Dynamic Adversarial Patch for Evading Object Detection Models

Dynamic Adversarial Patch for Evading Object Detection Models

25 October 2020
Shahar Hoory
T. Shapira
A. Shabtai
Yuval Elovici
    AAML
ArXivPDFHTML

Papers citing "Dynamic Adversarial Patch for Evading Object Detection Models"

40 / 40 papers shown
Title
TACO: Adversarial Camouflage Optimization on Trucks to Fool Object Detectors
TACO: Adversarial Camouflage Optimization on Trucks to Fool Object Detectors
Adonisz Dimitriu
Tamás Michaletzky
Viktor Remeli
AAML
358
0
0
28 Oct 2024
Runtime Stealthy Perception Attacks against DNN-based Adaptive Cruise Control Systems
Runtime Stealthy Perception Attacks against DNN-based Adaptive Cruise Control Systems
Xugui Zhou
Anqi Chen
Maxfield Kouzel
Haotian Ren
Morgan McCarty
Cristina Nita-Rotaru
H. Alemzadeh
AAML
41
2
0
18 Jul 2023
YOLOv4: Optimal Speed and Accuracy of Object Detection
YOLOv4: Optimal Speed and Accuracy of Object Detection
Alexey Bochkovskiy
Chien-Yao Wang
H. Liao
VLM
ObjD
112
12,153
0
23 Apr 2020
Real-world adversarial attack on MTCNN face detection system
Real-world adversarial attack on MTCNN face detection system
Edgar Kaziakhmedov
Klim Kireev
Grigorii Melnikov
Mikhail Aleksandrovich Pautov
Aleksandr Petiushko
CVBM
AAML
39
41
0
14 Oct 2019
Universal Physical Camouflage Attacks on Object Detectors
Universal Physical Camouflage Attacks on Object Detectors
Lifeng Huang
Chengying Gao
Yuyin Zhou
Cihang Xie
Alan Yuille
C. Zou
Ning Liu
AAML
155
163
0
10 Sep 2019
Fooling automated surveillance cameras: adversarial patches to attack
  person detection
Fooling automated surveillance cameras: adversarial patches to attack person detection
Simen Thys
W. V. Ranst
Toon Goedemé
AAML
92
567
0
18 Apr 2019
Adversarial Attacks and Defences: A Survey
Adversarial Attacks and Defences: A Survey
Anirban Chakraborty
Manaar Alam
Vishal Dey
Anupam Chattopadhyay
Debdeep Mukhopadhyay
AAML
OOD
46
676
0
28 Sep 2018
Deep Learning for Generic Object Detection: A Survey
Deep Learning for Generic Object Detection: A Survey
Li Liu
Wanli Ouyang
Xiaogang Wang
Paul Fieguth
Jie Chen
Xinwang Liu
M. Pietikäinen
ObjD
VLM
OOD
143
2,438
0
06 Sep 2018
Physical Adversarial Examples for Object Detectors
Physical Adversarial Examples for Object Detectors
Kevin Eykholt
Ivan Evtimov
Earlence Fernandes
Yue Liu
Amir Rahmati
Florian Tramèr
Atul Prakash
Tadayoshi Kohno
D. Song
AAML
67
467
0
20 Jul 2018
ShapeShifter: Robust Physical Adversarial Attack on Faster R-CNN Object
  Detector
ShapeShifter: Robust Physical Adversarial Attack on Faster R-CNN Object Detector
Shang-Tse Chen
Cory Cornelius
Jason Martin
Duen Horng Chau
ObjD
179
425
0
16 Apr 2018
YOLOv3: An Incremental Improvement
YOLOv3: An Incremental Improvement
Joseph Redmon
Ali Farhadi
ObjD
83
21,306
0
08 Apr 2018
Adversarial Patch
Adversarial Patch
Tom B. Brown
Dandelion Mané
Aurko Roy
Martín Abadi
Justin Gilmer
AAML
54
1,093
0
27 Dec 2017
VoxelNet: End-to-End Learning for Point Cloud Based 3D Object Detection
VoxelNet: End-to-End Learning for Point Cloud Based 3D Object Detection
Yin Zhou
Oncel Tuzel
3DPC
92
3,700
0
17 Nov 2017
Evasion Attacks against Machine Learning at Test Time
Evasion Attacks against Machine Learning at Test Time
Battista Biggio
Igino Corona
Davide Maiorca
B. Nelson
Nedim Srndic
Pavel Laskov
Giorgio Giacinto
Fabio Roli
AAML
93
2,140
0
21 Aug 2017
Synthesizing Robust Adversarial Examples
Synthesizing Robust Adversarial Examples
Anish Athalye
Logan Engstrom
Ilya Sutskever
Kevin Kwok
AAML
34
66
0
24 Jul 2017
NO Need to Worry about Adversarial Examples in Object Detection in
  Autonomous Vehicles
NO Need to Worry about Adversarial Examples in Object Detection in Autonomous Vehicles
Jiajun Lu
Hussein Sibai
Evan Fabry
David A. Forsyth
AAML
55
280
0
12 Jul 2017
Adversarial Examples for Semantic Segmentation and Object Detection
Adversarial Examples for Semantic Segmentation and Object Detection
Cihang Xie
Jianyu Wang
Zhishuai Zhang
Yuyin Zhou
Lingxi Xie
Alan Yuille
GAN
AAML
80
928
0
24 Mar 2017
Mask R-CNN
Mask R-CNN
Kaiming He
Georgia Gkioxari
Piotr Dollár
Ross B. Girshick
ObjD
298
27,018
0
20 Mar 2017
YOLO9000: Better, Faster, Stronger
YOLO9000: Better, Faster, Stronger
Joseph Redmon
Ali Farhadi
VLM
ObjD
147
15,535
0
25 Dec 2016
SqueezeDet: Unified, Small, Low Power Fully Convolutional Neural
  Networks for Real-Time Object Detection for Autonomous Driving
SqueezeDet: Unified, Small, Low Power Fully Convolutional Neural Networks for Real-Time Object Detection for Autonomous Driving
Bichen Wu
Alvin Wan
F. Iandola
Peter H. Jin
Kurt Keutzer
69
513
0
04 Dec 2016
Multi-View 3D Object Detection Network for Autonomous Driving
Multi-View 3D Object Detection Network for Autonomous Driving
Xiaozhi Chen
Huimin Ma
Ji Wan
Bo Li
Tian Xia
3DPC
144
2,762
0
23 Nov 2016
Universal adversarial perturbations
Universal adversarial perturbations
Seyed-Mohsen Moosavi-Dezfooli
Alhussein Fawzi
Omar Fawzi
P. Frossard
AAML
108
2,520
0
26 Oct 2016
Towards Evaluating the Robustness of Neural Networks
Towards Evaluating the Robustness of Neural Networks
Nicholas Carlini
D. Wagner
OOD
AAML
160
8,497
0
16 Aug 2016
Spatially Supervised Recurrent Convolutional Neural Networks for Visual
  Object Tracking
Spatially Supervised Recurrent Convolutional Neural Networks for Visual Object Tracking
G. Ning
Zhi Zhang
Chen Huang
Zhihai He
Xiaobo Ren
Haohong Wang
45
245
0
19 Jul 2016
Adversarial examples in the physical world
Adversarial examples in the physical world
Alexey Kurakin
Ian Goodfellow
Samy Bengio
SILM
AAML
489
5,868
0
08 Jul 2016
End to End Learning for Self-Driving Cars
End to End Learning for Self-Driving Cars
Mariusz Bojarski
D. Testa
Daniel Dworakowski
Bernhard Firner
B. Flepp
...
Urs Muller
Jiakai Zhang
Xin Zhang
Jake Zhao
Karol Zieba
SSL
46
4,153
0
25 Apr 2016
The Limitations of Deep Learning in Adversarial Settings
The Limitations of Deep Learning in Adversarial Settings
Nicolas Papernot
Patrick McDaniel
S. Jha
Matt Fredrikson
Z. Berkay Celik
A. Swami
AAML
60
3,947
0
24 Nov 2015
DeepFool: a simple and accurate method to fool deep neural networks
DeepFool: a simple and accurate method to fool deep neural networks
Seyed-Mohsen Moosavi-Dezfooli
Alhussein Fawzi
P. Frossard
AAML
90
4,878
0
14 Nov 2015
Distillation as a Defense to Adversarial Perturbations against Deep
  Neural Networks
Distillation as a Defense to Adversarial Perturbations against Deep Neural Networks
Nicolas Papernot
Patrick McDaniel
Xi Wu
S. Jha
A. Swami
AAML
45
3,061
0
14 Nov 2015
Continuous control with deep reinforcement learning
Continuous control with deep reinforcement learning
Timothy Lillicrap
Jonathan J. Hunt
Alexander Pritzel
N. Heess
Tom Erez
Yuval Tassa
David Silver
Daan Wierstra
176
13,174
0
09 Sep 2015
You Only Look Once: Unified, Real-Time Object Detection
You Only Look Once: Unified, Real-Time Object Detection
Joseph Redmon
S. Divvala
Ross B. Girshick
Ali Farhadi
ObjD
543
36,643
0
08 Jun 2015
Faster R-CNN: Towards Real-Time Object Detection with Region Proposal
  Networks
Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks
Shaoqing Ren
Kaiming He
Ross B. Girshick
Jian Sun
AIMat
ObjD
396
61,900
0
04 Jun 2015
Fast R-CNN
Fast R-CNN
Ross B. Girshick
ObjD
275
24,933
0
30 Apr 2015
Adam: A Method for Stochastic Optimization
Adam: A Method for Stochastic Optimization
Diederik P. Kingma
Jimmy Ba
ODL
736
149,474
0
22 Dec 2014
Explaining and Harnessing Adversarial Examples
Explaining and Harnessing Adversarial Examples
Ian Goodfellow
Jonathon Shlens
Christian Szegedy
AAML
GAN
158
18,922
0
20 Dec 2014
Understanding Deep Image Representations by Inverting Them
Understanding Deep Image Representations by Inverting Them
Aravindh Mahendran
Andrea Vedaldi
FAtt
92
1,959
0
26 Nov 2014
Microsoft COCO: Common Objects in Context
Microsoft COCO: Common Objects in Context
Nayeon Lee
Michael Maire
Serge J. Belongie
Lubomir Bourdev
Ross B. Girshick
James Hays
Pietro Perona
Deva Ramanan
C. L. Zitnick
Piotr Dollár
ObjD
237
43,290
0
01 May 2014
Intriguing properties of neural networks
Intriguing properties of neural networks
Christian Szegedy
Wojciech Zaremba
Ilya Sutskever
Joan Bruna
D. Erhan
Ian Goodfellow
Rob Fergus
AAML
159
14,831
1
21 Dec 2013
Rich feature hierarchies for accurate object detection and semantic
  segmentation
Rich feature hierarchies for accurate object detection and semantic segmentation
Ross B. Girshick
Jeff Donahue
Trevor Darrell
Jitendra Malik
ObjD
211
26,091
0
11 Nov 2013
Poisoning Attacks against Support Vector Machines
Poisoning Attacks against Support Vector Machines
Battista Biggio
B. Nelson
Pavel Laskov
AAML
80
1,580
0
27 Jun 2012
1