ResearchTrend.AI
  • Papers
  • Communities
  • Organizations
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2010.11034
  4. Cited By
On Explaining Decision Trees

On Explaining Decision Trees

21 October 2020
Yacine Izza
Alexey Ignatiev
Sasha Rubin
    FAtt
ArXiv (abs)PDFHTML

Papers citing "On Explaining Decision Trees"

42 / 42 papers shown
Title
Interpretable reinforcement learning for heat pump control through asymmetric differentiable decision trees
Interpretable reinforcement learning for heat pump control through asymmetric differentiable decision trees
Toon Van Puyvelde
Mehran Zareh
Chris Develder
63
0
0
02 Jun 2025
Fixed Point Explainability
Fixed Point Explainability
Emanuele La Malfa
Jon Vadillo
Marco Molinari
Michael Wooldridge
161
0
0
18 May 2025
Feature Relevancy, Necessity and Usefulness: Complexity and Algorithms
Feature Relevancy, Necessity and Usefulness: Complexity and Algorithms
Tomás Capdevielle
Santiago Cifuentes
FAtt
92
0
0
06 May 2025
A Mathematical Philosophy of Explanations in Mechanistic Interpretability -- The Strange Science Part I.i
A Mathematical Philosophy of Explanations in Mechanistic Interpretability -- The Strange Science Part I.i
Kola Ayonrinde
Louis Jaburi
MILM
198
1
0
01 May 2025
Self-Explaining Neural Networks for Business Process Monitoring
Self-Explaining Neural Networks for Business Process Monitoring
Shahaf Bassan
Shlomit Gur
Sergey Zeltyn
Konstantinos Mavrogiorgos
Ron Eliav
Dimosthenis Kyriazis
113
0
0
23 Mar 2025
Conceptual Learning via Embedding Approximations for Reinforcing
  Interpretability and Transparency
Conceptual Learning via Embedding Approximations for Reinforcing Interpretability and Transparency
Maor Dikter
Tsachi Blau
Chaim Baskin
132
0
0
13 Jun 2024
Logic-Based Explainability: Past, Present & Future
Logic-Based Explainability: Past, Present & Future
Joao Marques-Silva
96
3
0
04 Jun 2024
Logic-based Explanations for Linear Support Vector Classifiers with
  Reject Option
Logic-based Explanations for Linear Support Vector Classifiers with Reject Option
Francisco Mateus Rocha
Thiago Alves Rocha
Reginaldo Pereira Fernandes Ribeiro
A. Neto
FAttLRM
30
0
0
24 Mar 2024
A Survey on Radar-Based Fall Detection
A Survey on Radar-Based Fall Detection
Shuting Hu
Siyang Cao
N. Toosizadeh
Jennifer Barton
Melvin G. Hector
Mindy J. Fain
22
10
0
07 Dec 2023
A Uniform Language to Explain Decision Trees
A Uniform Language to Explain Decision Trees
Marcelo Arenas
Pablo Barceló
Diego Bustamante
Jose Caraball
Bernardo Subercaseaux
67
1
0
18 Oct 2023
Formally Explaining Neural Networks within Reactive Systems
Formally Explaining Neural Networks within Reactive Systems
Shahaf Bassan
Guy Amir
Davide Corsi
Idan Refaeli
Guy Katz
AAML
117
17
0
31 Jul 2023
Disproving XAI Myths with Formal Methods -- Initial Results
Disproving XAI Myths with Formal Methods -- Initial Results
Sasha Rubin
90
9
0
13 May 2023
Logic for Explainable AI
Logic for Explainable AI
Adnan Darwiche
78
8
0
09 May 2023
On Computing Probabilistic Abductive Explanations
On Computing Probabilistic Abductive Explanations
Yacine Izza
Xuanxiang Huang
Alexey Ignatiev
Nina Narodytska
Martin C. Cooper
Sasha Rubin
FAttXAI
121
20
0
12 Dec 2022
Towards Formal XAI: Formally Approximate Minimal Explanations of Neural
  Networks
Towards Formal XAI: Formally Approximate Minimal Explanations of Neural Networks
Shahaf Bassan
Guy Katz
FAttAAML
118
27
0
25 Oct 2022
Logic-Based Explainability in Machine Learning
Logic-Based Explainability in Machine Learning
Sasha Rubin
LRMXAI
155
40
0
24 Oct 2022
Computing Abductive Explanations for Boosted Trees
Computing Abductive Explanations for Boosted Trees
Gilles Audemard
Jean-Marie Lagniez
Pierre Marquis
N. Szczepanski
94
14
0
16 Sep 2022
A Nested Genetic Algorithm for Explaining Classification Data Sets with
  Decision Rules
A Nested Genetic Algorithm for Explaining Classification Data Sets with Decision Rules
P. Matt
Rosina Ziegler
Danilo Brajovic
Marco Roth
Marco F. Huber
62
2
0
23 Aug 2022
Leveraging Explanations in Interactive Machine Learning: An Overview
Leveraging Explanations in Interactive Machine Learning: An Overview
Stefano Teso
Öznur Alkan
Wolfgang Stammer
Elizabeth M. Daly
XAIFAttLRM
168
63
0
29 Jul 2022
On Computing Relevant Features for Explaining NBCs
On Computing Relevant Features for Explaining NBCs
Yacine Izza
Sasha Rubin
102
5
0
11 Jul 2022
On Computing Probabilistic Explanations for Decision Trees
On Computing Probabilistic Explanations for Decision Trees
Marcelo Arenas
Pablo Barceló
M. Romero
Bernardo Subercaseaux
FAtt
96
42
0
30 Jun 2022
ASTERYX : A model-Agnostic SaT-basEd appRoach for sYmbolic and
  score-based eXplanations
ASTERYX : A model-Agnostic SaT-basEd appRoach for sYmbolic and score-based eXplanations
Ryma Boumazouza
Fahima Cheikh
Bertrand Mazure
Karim Tabia
79
32
0
23 Jun 2022
A Model-Agnostic SAT-based Approach for Symbolic Explanation Enumeration
A Model-Agnostic SAT-based Approach for Symbolic Explanation Enumeration
Ryma Boumazouza
Fahima Cheikh-Alili
Bertrand Mazure
Karim Tabia
58
0
0
23 Jun 2022
Interpretability Guarantees with Merlin-Arthur Classifiers
Interpretability Guarantees with Merlin-Arthur Classifiers
S. Wäldchen
Kartikey Sharma
Berkant Turan
Max Zimmer
Sebastian Pokutta
FAtt
92
5
0
01 Jun 2022
On Tackling Explanation Redundancy in Decision Trees
On Tackling Explanation Redundancy in Decision Trees
Yacine Izza
Alexey Ignatiev
Sasha Rubin
FAtt
105
64
0
20 May 2022
Classifying Human Activities using Machine Learning and Deep Learning
  Techniques
Classifying Human Activities using Machine Learning and Deep Learning Techniques
Sanku Satya Uday
Satti Thanuja Pavani
T. Lakshmi
Rohit Chivukula
36
4
0
19 May 2022
Efficient Learning of Interpretable Classification Rules
Efficient Learning of Interpretable Classification Rules
Bishwamittra Ghosh
Dmitry Malioutov
Kuldeep S. Meel
67
8
0
14 May 2022
Explaining a Deep Reinforcement Learning Docking Agent Using Linear
  Model Trees with User Adapted Visualization
Explaining a Deep Reinforcement Learning Docking Agent Using Linear Model Trees with User Adapted Visualization
Vilde B. Gjærum
Inga Strümke
O. Alsos
A. Lekkas
FAtt
73
16
0
01 Mar 2022
From global to local MDI variable importances for random forests and
  when they are Shapley values
From global to local MDI variable importances for random forests and when they are Shapley values
Antonio Sutera
Gilles Louppe
V. A. Huynh-Thu
L. Wehenkel
Pierre Geurts
FAtt
72
7
0
03 Nov 2021
Foundations of Symbolic Languages for Model Interpretability
Foundations of Symbolic Languages for Model Interpretability
Marcelo Arenas
Daniel Baez
Pablo Barceló
Jorge A. Pérez
Bernardo Subercaseaux
ReLMLRM
172
25
0
05 Oct 2021
Trading Complexity for Sparsity in Random Forest Explanations
Trading Complexity for Sparsity in Random Forest Explanations
Gilles Audemard
S. Bellart
Louenas Bounia
F. Koriche
Jean-Marie Lagniez
Pierre Marquis
63
40
0
11 Aug 2021
On the Explanatory Power of Decision Trees
On the Explanatory Power of Decision Trees
Gilles Audemard
S. Bellart
Louenas Bounia
F. Koriche
Jean-Marie Lagniez
Pierre Marquis
FAtt
43
11
0
11 Aug 2021
On Efficiently Explaining Graph-Based Classifiers
On Efficiently Explaining Graph-Based Classifiers
Xuanxiang Huang
Yacine Izza
Alexey Ignatiev
Sasha Rubin
FAtt
118
39
0
02 Jun 2021
Efficient Explanations With Relevant Sets
Efficient Explanations With Relevant Sets
Yacine Izza
Alexey Ignatiev
Nina Narodytska
Martin C. Cooper
Sasha Rubin
FAtt
94
16
0
01 Jun 2021
Explanations for Monotonic Classifiers
Explanations for Monotonic Classifiers
Sasha Rubin
Thomas Gerspacher
M. Cooper
Alexey Ignatiev
Nina Narodytska
FAtt
124
46
0
01 Jun 2021
Probabilistic Sufficient Explanations
Probabilistic Sufficient Explanations
Eric Wang
Pasha Khosravi
Guy Van den Broeck
XAIFAttTPM
183
25
0
21 May 2021
SAT-Based Rigorous Explanations for Decision Lists
SAT-Based Rigorous Explanations for Decision Lists
Alexey Ignatiev
Sasha Rubin
XAI
70
46
0
14 May 2021
On the Computational Intelligibility of Boolean Classifiers
On the Computational Intelligibility of Boolean Classifiers
Gilles Audemard
S. Bellart
Louenas Bounia
F. Koriche
Jean-Marie Lagniez
Pierre Marquis
66
58
0
13 Apr 2021
Model Learning with Personalized Interpretability Estimation (ML-PIE)
Model Learning with Personalized Interpretability Estimation (ML-PIE)
M. Virgolin
A. D. Lorenzo
Francesca Randone
Eric Medvet
M. Wahde
128
32
0
13 Apr 2021
On Relating 'Why?' and 'Why Not?' Explanations
On Relating 'Why?' and 'Why Not?' Explanations
Alexey Ignatiev
Nina Narodytska
Nicholas M. Asher
Sasha Rubin
XAIFAttLRM
77
26
0
21 Dec 2020
Succinct Explanations With Cascading Decision Trees
Succinct Explanations With Cascading Decision Trees
Jialu Zhang
Yitan Wang
Mark Santolucito
R. Piskac
22
1
0
13 Oct 2020
Explaining Naive Bayes and Other Linear Classifiers with Polynomial Time
  and Delay
Explaining Naive Bayes and Other Linear Classifiers with Polynomial Time and Delay
Sasha Rubin
Thomas Gerspacher
Martin C. Cooper
Alexey Ignatiev
Nina Narodytska
FAtt
79
63
0
13 Aug 2020
1