Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2010.03459
Cited By
Learning disentangled representations with the Wasserstein Autoencoder
7 October 2020
Benoit Gaujac
Ilya Feige
David Barber
OOD
CoGe
DRL
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Learning disentangled representations with the Wasserstein Autoencoder"
3 / 3 papers shown
Title
Disentanglement Learning via Topology
Nikita Balabin
Daria Voronkova
I. Trofimov
Evgeny Burnaev
S. Barannikov
DRL
60
2
0
24 Aug 2023
Gromov-Wasserstein Autoencoders
Nao Nakagawa
Ren Togo
Takahiro Ogawa
Miki Haseyama
GAN
DRL
26
11
0
15 Sep 2022
WATCH: Wasserstein Change Point Detection for High-Dimensional Time Series Data
Kamil Faber
Roberto Corizzo
B. Sniezynski
Michael Baron
Nathalie Japkowicz
AI4TS
31
22
0
18 Jan 2022
1