ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2010.03459
  4. Cited By
Learning disentangled representations with the Wasserstein Autoencoder

Learning disentangled representations with the Wasserstein Autoencoder

7 October 2020
Benoit Gaujac
Ilya Feige
David Barber
    OOD
    CoGe
    DRL
ArXivPDFHTML

Papers citing "Learning disentangled representations with the Wasserstein Autoencoder"

3 / 3 papers shown
Title
Disentanglement Learning via Topology
Disentanglement Learning via Topology
Nikita Balabin
Daria Voronkova
I. Trofimov
Evgeny Burnaev
S. Barannikov
DRL
60
2
0
24 Aug 2023
Gromov-Wasserstein Autoencoders
Gromov-Wasserstein Autoencoders
Nao Nakagawa
Ren Togo
Takahiro Ogawa
Miki Haseyama
GAN
DRL
26
11
0
15 Sep 2022
WATCH: Wasserstein Change Point Detection for High-Dimensional Time
  Series Data
WATCH: Wasserstein Change Point Detection for High-Dimensional Time Series Data
Kamil Faber
Roberto Corizzo
B. Sniezynski
Michael Baron
Nathalie Japkowicz
AI4TS
31
22
0
18 Jan 2022
1