ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2010.02193
  4. Cited By
Mastering Atari with Discrete World Models

Mastering Atari with Discrete World Models

5 October 2020
Danijar Hafner
Timothy Lillicrap
Mohammad Norouzi
Jimmy Ba
    DRL
ArXivPDFHTML

Papers citing "Mastering Atari with Discrete World Models"

22 / 172 papers shown
Title
DreamerPro: Reconstruction-Free Model-Based Reinforcement Learning with
  Prototypical Representations
DreamerPro: Reconstruction-Free Model-Based Reinforcement Learning with Prototypical Representations
Fei Deng
Ingook Jang
Sungjin Ahn
VLM
29
62
0
27 Oct 2021
Self-Consistent Models and Values
Self-Consistent Models and Values
Roy Miles
Kate Baumli
Zita Marinho
Angelos Filos
Matteo Hessel
Hado van Hasselt
David Silver
38
8
0
25 Oct 2021
Gradient-Based Mixed Planning with Symbolic and Numeric Action
  Parameters
Gradient-Based Mixed Planning with Symbolic and Numeric Action Parameters
Kebing Jin
H. Zhuo
Zhanhao Xiao
Hai Wan
Subbarao Kambhampati
39
9
0
19 Oct 2021
Planning from Pixels in Environments with Combinatorially Hard Search
  Spaces
Planning from Pixels in Environments with Combinatorially Hard Search Spaces
Marco Bagatella
Miroslav Olsák
Michal Rolínek
Georg Martius
OffRL
21
6
0
12 Oct 2021
On The Transferability of Deep-Q Networks
On The Transferability of Deep-Q Networks
M. Sabatelli
Pierre Geurts
29
2
0
06 Oct 2021
Imaginary Hindsight Experience Replay: Curious Model-based Learning for
  Sparse Reward Tasks
Imaginary Hindsight Experience Replay: Curious Model-based Learning for Sparse Reward Tasks
Robert McCarthy
Qiang Wang
S. Redmond
OffRL
27
15
0
05 Oct 2021
Learning Dynamics Models for Model Predictive Agents
Learning Dynamics Models for Model Predictive Agents
M. Lutter
Leonard Hasenclever
Arunkumar Byravan
Gabriel Dulac-Arnold
Piotr Trochim
N. Heess
J. Merel
Yuval Tassa
AI4CE
57
26
0
29 Sep 2021
Training Deep Spiking Auto-encoders without Bursting or Dying Neurons
  through Regularization
Training Deep Spiking Auto-encoders without Bursting or Dying Neurons through Regularization
Justus F. Hübotter
Pablo Lanillos
Jakub M. Tomczak
11
3
0
22 Sep 2021
Benchmarking the Spectrum of Agent Capabilities
Benchmarking the Spectrum of Agent Capabilities
Danijar Hafner
ELM
22
126
0
14 Sep 2021
Deep Reinforcement Learning at the Edge of the Statistical Precipice
Deep Reinforcement Learning at the Edge of the Statistical Precipice
Rishabh Agarwal
Max Schwarzer
Pablo Samuel Castro
Aaron Courville
Marc G. Bellemare
OffRL
50
633
0
30 Aug 2021
Reimagining an autonomous vehicle
Reimagining an autonomous vehicle
Jeffrey Hawke
E. Haibo
Vijay Badrinarayanan
Alex Kendall
29
11
0
12 Aug 2021
Human-Level Reinforcement Learning through Theory-Based Modeling,
  Exploration, and Planning
Human-Level Reinforcement Learning through Theory-Based Modeling, Exploration, and Planning
Pedro Tsividis
J. Loula
Jake Burga
Nathan Foss
Andres Campero
Thomas Pouncy
S. Gershman
J. Tenenbaum
LM&Ro
21
43
0
27 Jul 2021
Mastering Visual Continuous Control: Improved Data-Augmented
  Reinforcement Learning
Mastering Visual Continuous Control: Improved Data-Augmented Reinforcement Learning
Denis Yarats
Rob Fergus
A. Lazaric
Lerrel Pinto
OffRL
11
337
0
20 Jul 2021
CoBERL: Contrastive BERT for Reinforcement Learning
CoBERL: Contrastive BERT for Reinforcement Learning
Andrea Banino
Adria Puidomenech Badia
Jacob Walker
Tim Scholtes
Jovana Mitrović
Charles Blundell
OffRL
30
36
0
12 Jul 2021
Control-Oriented Model-Based Reinforcement Learning with Implicit
  Differentiation
Control-Oriented Model-Based Reinforcement Learning with Implicit Differentiation
Evgenii Nikishin
Romina Abachi
Rishabh Agarwal
Pierre-Luc Bacon
OffRL
49
34
0
06 Jun 2021
Learning First-Order Representations for Planning from Black-Box States:
  New Results
Learning First-Order Representations for Planning from Black-Box States: New Results
I. D. Rodriguez
Blai Bonet
J. Romero
Hector Geffner
NAI
17
21
0
23 May 2021
GEM: Group Enhanced Model for Learning Dynamical Control Systems
GEM: Group Enhanced Model for Learning Dynamical Control Systems
Philippe Hansen-Estruch
Wenling Shang
Lerrel Pinto
Pieter Abbeel
Stas Tiomkin
AI4CE
25
2
0
07 Apr 2021
A Whole Brain Probabilistic Generative Model: Toward Realizing Cognitive
  Architectures for Developmental Robots
A Whole Brain Probabilistic Generative Model: Toward Realizing Cognitive Architectures for Developmental Robots
T. Taniguchi
Hiroshi Yamakawa
Takayuki Nagai
Kenji Doya
M. Sakagami
Masahiro Suzuki
Tomoaki Nakamura
Akira Taniguchi
25
23
0
15 Mar 2021
Latent Imagination Facilitates Zero-Shot Transfer in Autonomous Racing
Latent Imagination Facilitates Zero-Shot Transfer in Autonomous Racing
Axel Brunnbauer
Luigi Berducci
Andreas Brandstätter
Mathias Lechner
Ramin Hasani
Daniela Rus
Radu Grosu
LM&Ro
30
37
0
08 Mar 2021
Behavior From the Void: Unsupervised Active Pre-Training
Behavior From the Void: Unsupervised Active Pre-Training
Hao Liu
Pieter Abbeel
VLM
SSL
36
194
0
08 Mar 2021
Smaller World Models for Reinforcement Learning
Smaller World Models for Reinforcement Learning
Jan Robine
Tobias Uelwer
Stefan Harmeling
DRL
16
3
0
12 Oct 2020
On the Sensory Commutativity of Action Sequences for Embodied Agents
On the Sensory Commutativity of Action Sequences for Embodied Agents
Hugo Caselles-Dupré
Michael Garcia Ortiz
David Filliat
17
4
0
13 Feb 2020
Previous
1234