Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2010.01695
Cited By
MetaDetect: Uncertainty Quantification and Prediction Quality Estimates for Object Detection
4 October 2020
Marius Schubert
Karsten Kahl
Matthias Rottmann
UQCV
Re-assign community
ArXiv
PDF
HTML
Papers citing
"MetaDetect: Uncertainty Quantification and Prediction Quality Estimates for Object Detection"
26 / 26 papers shown
Title
MetaToken: Detecting Hallucination in Image Descriptions by Meta Classification
Laura Fieback
Jakob Spiegelberg
Hanno Gottschalk
MLLM
105
5
0
29 May 2024
Multivariate Confidence Calibration for Object Detection
Fabian Küppers
Jan Kronenberger
Amirhossein Shantia
Anselm Haselhoff
UQCV
26
112
0
28 Apr 2020
MetaFusion: Controlled False-Negative Reduction of Minority Classes in Semantic Segmentation
Robin Shing Moon Chan
Matthias Rottmann
Fabian Hüger
Peter Schlicht
Hanno Gottschalk
31
16
0
16 Dec 2019
Detection of False Positive and False Negative Samples in Semantic Segmentation
Matthias Rottmann
Kira Maag
Robin Shing Moon Chan
Fabian Hüger
Peter Schlicht
Hanno Gottschalk
UQCV
44
23
0
08 Dec 2019
Time-Dynamic Estimates of the Reliability of Deep Semantic Segmentation Networks
Kira Maag
Matthias Rottmann
Hanno Gottschalk
57
34
0
12 Nov 2019
Uncertainty Estimation in One-Stage Object Detection
Florian Kraus
Klaus C. J. Dietmayer
UQCV
42
83
0
24 May 2019
Uncertainty Measures and Prediction Quality Rating for the Semantic Segmentation of Nested Multi Resolution Street Scene Images
Matthias Rottmann
Marius Schubert
UQCV
49
38
0
09 Apr 2019
BayesOD: A Bayesian Approach for Uncertainty Estimation in Deep Object Detectors
Ali Harakeh
Michael H. W. Smart
Steven L. Waslander
BDL
UQCV
44
117
0
09 Mar 2019
Calibrating Uncertainties in Object Localization Task
Buu Phan
Rick Salay
Krzysztof Czarnecki
Vahdat Abdelzad
Taylor Denouden
Sachin Vernekar
UQCV
52
22
0
27 Nov 2018
Prediction Error Meta Classification in Semantic Segmentation: Detection via Aggregated Dispersion Measures of Softmax Probabilities
Matthias Rottmann
Pascal Colling
Thomas-Paul Hack
Robin Shing Moon Chan
Fabian Hüger
Peter Schlicht
Hanno Gottschalk
UQCV
99
81
0
01 Nov 2018
Evaluating Merging Strategies for Sampling-based Uncertainty Techniques in Object Detection
Dimity Miller
Feras Dayoub
Michael Milford
Niko Sünderhauf
96
105
0
17 Sep 2018
Leveraging Heteroscedastic Aleatoric Uncertainties for Robust Real-Time LiDAR 3D Object Detection
Di Feng
Lars Rosenbaum
Fabian Timm
Klaus C. J. Dietmayer
3DPC
57
69
0
14 Sep 2018
Inherent Brain Segmentation Quality Control from Fully ConvNet Monte Carlo Sampling
Abhijit Guha Roy
Sailesh Conjeti
Nassir Navab
Christian Wachinger
UQCV
41
87
0
19 Apr 2018
Towards Safe Autonomous Driving: Capture Uncertainty in the Deep Neural Network For Lidar 3D Vehicle Detection
Di Feng
Lars Rosenbaum
Klaus C. J. Dietmayer
3DPC
UQCV
62
244
0
13 Apr 2018
YOLOv3: An Incremental Improvement
Joseph Redmon
Ali Farhadi
ObjD
98
21,306
0
08 Apr 2018
Propagating Uncertainty in Multi-Stage Bayesian Convolutional Neural Networks with Application to Pulmonary Nodule Detection
Onur Ozdemir
Benjamin Woodward
A. Berlin
UQCV
MedIm
47
37
0
01 Dec 2017
Dropout Sampling for Robust Object Detection in Open-Set Conditions
Dimity Miller
Lachlan Nicholson
Feras Dayoub
Niko Sünderhauf
BDL
UQCV
61
235
0
18 Oct 2017
On Calibration of Modern Neural Networks
Chuan Guo
Geoff Pleiss
Yu Sun
Kilian Q. Weinberger
UQCV
222
5,774
0
14 Jun 2017
A Baseline for Detecting Misclassified and Out-of-Distribution Examples in Neural Networks
Dan Hendrycks
Kevin Gimpel
UQCV
120
3,420
0
07 Oct 2016
You Only Look Once: Unified, Real-Time Object Detection
Joseph Redmon
S. Divvala
Ross B. Girshick
Ali Farhadi
ObjD
609
36,643
0
08 Jun 2015
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCV
BDL
533
9,233
0
06 Jun 2015
Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks
Shaoqing Ren
Kaiming He
Ross B. Girshick
Jian Sun
AIMat
ObjD
423
61,900
0
04 Jun 2015
Early Stopping is Nonparametric Variational Inference
D. Maclaurin
David Duvenaud
Ryan P. Adams
BDL
67
95
0
06 Apr 2015
Explaining and Harnessing Adversarial Examples
Ian Goodfellow
Jonathon Shlens
Christian Szegedy
AAML
GAN
201
18,922
0
20 Dec 2014
Microsoft COCO: Common Objects in Context
Nayeon Lee
Michael Maire
Serge J. Belongie
Lubomir Bourdev
Ross B. Girshick
James Hays
Pietro Perona
Deva Ramanan
C. L. Zitnick
Piotr Dollár
ObjD
336
43,290
0
01 May 2014
SMOTE: Synthetic Minority Over-sampling Technique
Nitesh Chawla
Kevin W. Bowyer
Lawrence Hall
W. Kegelmeyer
AI4TS
288
25,443
0
09 Jun 2011
1