ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2010.01695
  4. Cited By
MetaDetect: Uncertainty Quantification and Prediction Quality Estimates
  for Object Detection

MetaDetect: Uncertainty Quantification and Prediction Quality Estimates for Object Detection

4 October 2020
Marius Schubert
Karsten Kahl
Matthias Rottmann
    UQCV
ArXivPDFHTML

Papers citing "MetaDetect: Uncertainty Quantification and Prediction Quality Estimates for Object Detection"

26 / 26 papers shown
Title
MetaToken: Detecting Hallucination in Image Descriptions by Meta Classification
MetaToken: Detecting Hallucination in Image Descriptions by Meta Classification
Laura Fieback
Jakob Spiegelberg
Hanno Gottschalk
MLLM
105
5
0
29 May 2024
Multivariate Confidence Calibration for Object Detection
Multivariate Confidence Calibration for Object Detection
Fabian Küppers
Jan Kronenberger
Amirhossein Shantia
Anselm Haselhoff
UQCV
26
112
0
28 Apr 2020
MetaFusion: Controlled False-Negative Reduction of Minority Classes in
  Semantic Segmentation
MetaFusion: Controlled False-Negative Reduction of Minority Classes in Semantic Segmentation
Robin Shing Moon Chan
Matthias Rottmann
Fabian Hüger
Peter Schlicht
Hanno Gottschalk
31
16
0
16 Dec 2019
Detection of False Positive and False Negative Samples in Semantic
  Segmentation
Detection of False Positive and False Negative Samples in Semantic Segmentation
Matthias Rottmann
Kira Maag
Robin Shing Moon Chan
Fabian Hüger
Peter Schlicht
Hanno Gottschalk
UQCV
44
23
0
08 Dec 2019
Time-Dynamic Estimates of the Reliability of Deep Semantic Segmentation
  Networks
Time-Dynamic Estimates of the Reliability of Deep Semantic Segmentation Networks
Kira Maag
Matthias Rottmann
Hanno Gottschalk
57
34
0
12 Nov 2019
Uncertainty Estimation in One-Stage Object Detection
Uncertainty Estimation in One-Stage Object Detection
Florian Kraus
Klaus C. J. Dietmayer
UQCV
42
83
0
24 May 2019
Uncertainty Measures and Prediction Quality Rating for the Semantic
  Segmentation of Nested Multi Resolution Street Scene Images
Uncertainty Measures and Prediction Quality Rating for the Semantic Segmentation of Nested Multi Resolution Street Scene Images
Matthias Rottmann
Marius Schubert
UQCV
49
38
0
09 Apr 2019
BayesOD: A Bayesian Approach for Uncertainty Estimation in Deep Object
  Detectors
BayesOD: A Bayesian Approach for Uncertainty Estimation in Deep Object Detectors
Ali Harakeh
Michael H. W. Smart
Steven L. Waslander
BDL
UQCV
44
117
0
09 Mar 2019
Calibrating Uncertainties in Object Localization Task
Calibrating Uncertainties in Object Localization Task
Buu Phan
Rick Salay
Krzysztof Czarnecki
Vahdat Abdelzad
Taylor Denouden
Sachin Vernekar
UQCV
52
22
0
27 Nov 2018
Prediction Error Meta Classification in Semantic Segmentation: Detection
  via Aggregated Dispersion Measures of Softmax Probabilities
Prediction Error Meta Classification in Semantic Segmentation: Detection via Aggregated Dispersion Measures of Softmax Probabilities
Matthias Rottmann
Pascal Colling
Thomas-Paul Hack
Robin Shing Moon Chan
Fabian Hüger
Peter Schlicht
Hanno Gottschalk
UQCV
99
81
0
01 Nov 2018
Evaluating Merging Strategies for Sampling-based Uncertainty Techniques
  in Object Detection
Evaluating Merging Strategies for Sampling-based Uncertainty Techniques in Object Detection
Dimity Miller
Feras Dayoub
Michael Milford
Niko Sünderhauf
96
105
0
17 Sep 2018
Leveraging Heteroscedastic Aleatoric Uncertainties for Robust Real-Time
  LiDAR 3D Object Detection
Leveraging Heteroscedastic Aleatoric Uncertainties for Robust Real-Time LiDAR 3D Object Detection
Di Feng
Lars Rosenbaum
Fabian Timm
Klaus C. J. Dietmayer
3DPC
57
69
0
14 Sep 2018
Inherent Brain Segmentation Quality Control from Fully ConvNet Monte
  Carlo Sampling
Inherent Brain Segmentation Quality Control from Fully ConvNet Monte Carlo Sampling
Abhijit Guha Roy
Sailesh Conjeti
Nassir Navab
Christian Wachinger
UQCV
41
87
0
19 Apr 2018
Towards Safe Autonomous Driving: Capture Uncertainty in the Deep Neural
  Network For Lidar 3D Vehicle Detection
Towards Safe Autonomous Driving: Capture Uncertainty in the Deep Neural Network For Lidar 3D Vehicle Detection
Di Feng
Lars Rosenbaum
Klaus C. J. Dietmayer
3DPC
UQCV
62
244
0
13 Apr 2018
YOLOv3: An Incremental Improvement
YOLOv3: An Incremental Improvement
Joseph Redmon
Ali Farhadi
ObjD
98
21,306
0
08 Apr 2018
Propagating Uncertainty in Multi-Stage Bayesian Convolutional Neural
  Networks with Application to Pulmonary Nodule Detection
Propagating Uncertainty in Multi-Stage Bayesian Convolutional Neural Networks with Application to Pulmonary Nodule Detection
Onur Ozdemir
Benjamin Woodward
A. Berlin
UQCV
MedIm
47
37
0
01 Dec 2017
Dropout Sampling for Robust Object Detection in Open-Set Conditions
Dropout Sampling for Robust Object Detection in Open-Set Conditions
Dimity Miller
Lachlan Nicholson
Feras Dayoub
Niko Sünderhauf
BDL
UQCV
61
235
0
18 Oct 2017
On Calibration of Modern Neural Networks
On Calibration of Modern Neural Networks
Chuan Guo
Geoff Pleiss
Yu Sun
Kilian Q. Weinberger
UQCV
222
5,774
0
14 Jun 2017
A Baseline for Detecting Misclassified and Out-of-Distribution Examples
  in Neural Networks
A Baseline for Detecting Misclassified and Out-of-Distribution Examples in Neural Networks
Dan Hendrycks
Kevin Gimpel
UQCV
120
3,420
0
07 Oct 2016
You Only Look Once: Unified, Real-Time Object Detection
You Only Look Once: Unified, Real-Time Object Detection
Joseph Redmon
S. Divvala
Ross B. Girshick
Ali Farhadi
ObjD
609
36,643
0
08 Jun 2015
Dropout as a Bayesian Approximation: Representing Model Uncertainty in
  Deep Learning
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCV
BDL
533
9,233
0
06 Jun 2015
Faster R-CNN: Towards Real-Time Object Detection with Region Proposal
  Networks
Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks
Shaoqing Ren
Kaiming He
Ross B. Girshick
Jian Sun
AIMat
ObjD
423
61,900
0
04 Jun 2015
Early Stopping is Nonparametric Variational Inference
Early Stopping is Nonparametric Variational Inference
D. Maclaurin
David Duvenaud
Ryan P. Adams
BDL
67
95
0
06 Apr 2015
Explaining and Harnessing Adversarial Examples
Explaining and Harnessing Adversarial Examples
Ian Goodfellow
Jonathon Shlens
Christian Szegedy
AAML
GAN
201
18,922
0
20 Dec 2014
Microsoft COCO: Common Objects in Context
Microsoft COCO: Common Objects in Context
Nayeon Lee
Michael Maire
Serge J. Belongie
Lubomir Bourdev
Ross B. Girshick
James Hays
Pietro Perona
Deva Ramanan
C. L. Zitnick
Piotr Dollár
ObjD
336
43,290
0
01 May 2014
SMOTE: Synthetic Minority Over-sampling Technique
SMOTE: Synthetic Minority Over-sampling Technique
Nitesh Chawla
Kevin W. Bowyer
Lawrence Hall
W. Kegelmeyer
AI4TS
288
25,443
0
09 Jun 2011
1