Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2009.13291
Cited By
Physics Informed Neural Networks for Simulating Radiative Transfer
25 September 2020
Siddhartha Mishra
Roberto Molinaro
PINN
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Physics Informed Neural Networks for Simulating Radiative Transfer"
25 / 25 papers shown
Title
Beyond Accuracy: EcoL2 Metric for Sustainable Neural PDE Solvers
Taniya Kapoor
Abhishek Chandra
Anastasios Stamou
Stephen J Roberts
14
0
0
18 May 2025
Understanding Generalization in Physics Informed Models through Affine Variety Dimensions
Takeshi Koshizuka
Issei Sato
AI4CE
112
0
0
31 Jan 2025
Fourier PINNs: From Strong Boundary Conditions to Adaptive Fourier Bases
Madison Cooley
Varun Shankar
Robert M. Kirby
Shandian Zhe
32
2
0
04 Oct 2024
Error Analysis and Numerical Algorithm for PDE Approximation with Hidden-Layer Concatenated Physics Informed Neural Networks
Yianxia Qian
Yongchao Zhang
Suchuan Dong
PINN
42
0
0
10 Jun 2024
Unveiling the optimization process of Physics Informed Neural Networks: How accurate and competitive can PINNs be?
Jorge F. Urbán
P. Stefanou
José A. Pons
PINN
45
6
0
07 May 2024
Macroscopic auxiliary asymptotic preserving neural networks for the linear radiative transfer equations
Hongyan Li
Song Jiang
Wenjun Sun
Liwei Xu
Guanyu Zhou
42
2
0
04 Mar 2024
An operator preconditioning perspective on training in physics-informed machine learning
Tim De Ryck
Florent Bonnet
Siddhartha Mishra
Emmanuel de Bezenac
AI4CE
47
16
0
09 Oct 2023
Bayesian Reasoning for Physics Informed Neural Networks
K. Graczyk
Kornel Witkowski
40
0
0
25 Aug 2023
Maximum-likelihood Estimators in Physics-Informed Neural Networks for High-dimensional Inverse Problems
G. S. Gusmão
A. Medford
PINN
22
8
0
12 Apr 2023
Error Analysis of Physics-Informed Neural Networks for Approximating Dynamic PDEs of Second Order in Time
Y. Qian
Yongchao Zhang
Yuanfei Huang
S. Dong
PINN
26
1
0
22 Mar 2023
Error convergence and engineering-guided hyperparameter search of PINNs: towards optimized I-FENN performance
Panos Pantidis
Habiba Eldababy
Christopher Miguel Tagle
M. Mobasher
35
20
0
03 Mar 2023
A model-data asymptotic-preserving neural network method based on micro-macro decomposition for gray radiative transfer equations
Haiyang Li
Song Jiang
Wenjun Sun
Liwei Xu
Guanyu Zhou
14
12
0
11 Dec 2022
Partial Differential Equations Meet Deep Neural Networks: A Survey
Shudong Huang
Wentao Feng
Chenwei Tang
Jiancheng Lv
AI4CE
AIMat
32
18
0
27 Oct 2022
wPINNs: Weak Physics informed neural networks for approximating entropy solutions of hyperbolic conservation laws
Tim De Ryck
Siddhartha Mishra
Roberto Molinaro
PINN
40
29
0
18 Jul 2022
Generic bounds on the approximation error for physics-informed (and) operator learning
Tim De Ryck
Siddhartha Mishra
PINN
63
59
0
23 May 2022
Do ReLU Networks Have An Edge When Approximating Compactly-Supported Functions?
Anastasis Kratsios
Behnoosh Zamanlooy
MLT
72
3
0
24 Apr 2022
Physics-constrained Unsupervised Learning of Partial Differential Equations using Meshes
M. Michelis
Robert K. Katzschmann
AI4CE
35
1
0
30 Mar 2022
Error estimates for physics informed neural networks approximating the Navier-Stokes equations
Tim De Ryck
Ameya Dilip Jagtap
S. Mishra
PINN
49
115
0
17 Mar 2022
Scientific Machine Learning through Physics-Informed Neural Networks: Where we are and What's next
S. Cuomo
Vincenzo Schiano Di Cola
F. Giampaolo
G. Rozza
Maizar Raissi
F. Piccialli
PINN
31
1,190
0
14 Jan 2022
Error analysis for physics informed neural networks (PINNs) approximating Kolmogorov PDEs
Tim De Ryck
Siddhartha Mishra
PINN
26
100
0
28 Jun 2021
Machine learning moment closure models for the radiative transfer equation I: directly learning a gradient based closure
Juntao Huang
Yingda Cheng
Andrew J. Christlieb
L. Roberts
AI4CE
23
26
0
12 May 2021
On the approximation of functions by tanh neural networks
Tim De Ryck
S. Lanthaler
Siddhartha Mishra
34
138
0
18 Apr 2021
Deep neural network surrogates for non-smooth quantities of interest in shape uncertainty quantification
L. Scarabosio
16
9
0
18 Jan 2021
An overview on deep learning-based approximation methods for partial differential equations
C. Beck
Martin Hutzenthaler
Arnulf Jentzen
Benno Kuckuck
35
146
0
22 Dec 2020
B-PINNs: Bayesian Physics-Informed Neural Networks for Forward and Inverse PDE Problems with Noisy Data
Liu Yang
Xuhui Meng
George Karniadakis
PINN
186
763
0
13 Mar 2020
1