ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2009.13291
  4. Cited By
Physics Informed Neural Networks for Simulating Radiative Transfer

Physics Informed Neural Networks for Simulating Radiative Transfer

25 September 2020
Siddhartha Mishra
Roberto Molinaro
    PINN
ArXivPDFHTML

Papers citing "Physics Informed Neural Networks for Simulating Radiative Transfer"

25 / 25 papers shown
Title
Beyond Accuracy: EcoL2 Metric for Sustainable Neural PDE Solvers
Beyond Accuracy: EcoL2 Metric for Sustainable Neural PDE Solvers
Taniya Kapoor
Abhishek Chandra
Anastasios Stamou
Stephen J Roberts
14
0
0
18 May 2025
Understanding Generalization in Physics Informed Models through Affine Variety Dimensions
Understanding Generalization in Physics Informed Models through Affine Variety Dimensions
Takeshi Koshizuka
Issei Sato
AI4CE
112
0
0
31 Jan 2025
Fourier PINNs: From Strong Boundary Conditions to Adaptive Fourier Bases
Fourier PINNs: From Strong Boundary Conditions to Adaptive Fourier Bases
Madison Cooley
Varun Shankar
Robert M. Kirby
Shandian Zhe
32
2
0
04 Oct 2024
Error Analysis and Numerical Algorithm for PDE Approximation with
  Hidden-Layer Concatenated Physics Informed Neural Networks
Error Analysis and Numerical Algorithm for PDE Approximation with Hidden-Layer Concatenated Physics Informed Neural Networks
Yianxia Qian
Yongchao Zhang
Suchuan Dong
PINN
42
0
0
10 Jun 2024
Unveiling the optimization process of Physics Informed Neural Networks:
  How accurate and competitive can PINNs be?
Unveiling the optimization process of Physics Informed Neural Networks: How accurate and competitive can PINNs be?
Jorge F. Urbán
P. Stefanou
José A. Pons
PINN
45
6
0
07 May 2024
Macroscopic auxiliary asymptotic preserving neural networks for the
  linear radiative transfer equations
Macroscopic auxiliary asymptotic preserving neural networks for the linear radiative transfer equations
Hongyan Li
Song Jiang
Wenjun Sun
Liwei Xu
Guanyu Zhou
42
2
0
04 Mar 2024
An operator preconditioning perspective on training in physics-informed
  machine learning
An operator preconditioning perspective on training in physics-informed machine learning
Tim De Ryck
Florent Bonnet
Siddhartha Mishra
Emmanuel de Bezenac
AI4CE
47
16
0
09 Oct 2023
Bayesian Reasoning for Physics Informed Neural Networks
Bayesian Reasoning for Physics Informed Neural Networks
K. Graczyk
Kornel Witkowski
40
0
0
25 Aug 2023
Maximum-likelihood Estimators in Physics-Informed Neural Networks for
  High-dimensional Inverse Problems
Maximum-likelihood Estimators in Physics-Informed Neural Networks for High-dimensional Inverse Problems
G. S. Gusmão
A. Medford
PINN
22
8
0
12 Apr 2023
Error Analysis of Physics-Informed Neural Networks for Approximating
  Dynamic PDEs of Second Order in Time
Error Analysis of Physics-Informed Neural Networks for Approximating Dynamic PDEs of Second Order in Time
Y. Qian
Yongchao Zhang
Yuanfei Huang
S. Dong
PINN
26
1
0
22 Mar 2023
Error convergence and engineering-guided hyperparameter search of PINNs:
  towards optimized I-FENN performance
Error convergence and engineering-guided hyperparameter search of PINNs: towards optimized I-FENN performance
Panos Pantidis
Habiba Eldababy
Christopher Miguel Tagle
M. Mobasher
35
20
0
03 Mar 2023
A model-data asymptotic-preserving neural network method based on
  micro-macro decomposition for gray radiative transfer equations
A model-data asymptotic-preserving neural network method based on micro-macro decomposition for gray radiative transfer equations
Haiyang Li
Song Jiang
Wenjun Sun
Liwei Xu
Guanyu Zhou
14
12
0
11 Dec 2022
Partial Differential Equations Meet Deep Neural Networks: A Survey
Partial Differential Equations Meet Deep Neural Networks: A Survey
Shudong Huang
Wentao Feng
Chenwei Tang
Jiancheng Lv
AI4CE
AIMat
32
18
0
27 Oct 2022
wPINNs: Weak Physics informed neural networks for approximating entropy
  solutions of hyperbolic conservation laws
wPINNs: Weak Physics informed neural networks for approximating entropy solutions of hyperbolic conservation laws
Tim De Ryck
Siddhartha Mishra
Roberto Molinaro
PINN
40
29
0
18 Jul 2022
Generic bounds on the approximation error for physics-informed (and)
  operator learning
Generic bounds on the approximation error for physics-informed (and) operator learning
Tim De Ryck
Siddhartha Mishra
PINN
63
59
0
23 May 2022
Do ReLU Networks Have An Edge When Approximating Compactly-Supported
  Functions?
Do ReLU Networks Have An Edge When Approximating Compactly-Supported Functions?
Anastasis Kratsios
Behnoosh Zamanlooy
MLT
72
3
0
24 Apr 2022
Physics-constrained Unsupervised Learning of Partial Differential
  Equations using Meshes
Physics-constrained Unsupervised Learning of Partial Differential Equations using Meshes
M. Michelis
Robert K. Katzschmann
AI4CE
35
1
0
30 Mar 2022
Error estimates for physics informed neural networks approximating the
  Navier-Stokes equations
Error estimates for physics informed neural networks approximating the Navier-Stokes equations
Tim De Ryck
Ameya Dilip Jagtap
S. Mishra
PINN
49
115
0
17 Mar 2022
Scientific Machine Learning through Physics-Informed Neural Networks:
  Where we are and What's next
Scientific Machine Learning through Physics-Informed Neural Networks: Where we are and What's next
S. Cuomo
Vincenzo Schiano Di Cola
F. Giampaolo
G. Rozza
Maizar Raissi
F. Piccialli
PINN
31
1,190
0
14 Jan 2022
Error analysis for physics informed neural networks (PINNs)
  approximating Kolmogorov PDEs
Error analysis for physics informed neural networks (PINNs) approximating Kolmogorov PDEs
Tim De Ryck
Siddhartha Mishra
PINN
26
100
0
28 Jun 2021
Machine learning moment closure models for the radiative transfer
  equation I: directly learning a gradient based closure
Machine learning moment closure models for the radiative transfer equation I: directly learning a gradient based closure
Juntao Huang
Yingda Cheng
Andrew J. Christlieb
L. Roberts
AI4CE
23
26
0
12 May 2021
On the approximation of functions by tanh neural networks
On the approximation of functions by tanh neural networks
Tim De Ryck
S. Lanthaler
Siddhartha Mishra
34
138
0
18 Apr 2021
Deep neural network surrogates for non-smooth quantities of interest in
  shape uncertainty quantification
Deep neural network surrogates for non-smooth quantities of interest in shape uncertainty quantification
L. Scarabosio
16
9
0
18 Jan 2021
An overview on deep learning-based approximation methods for partial
  differential equations
An overview on deep learning-based approximation methods for partial differential equations
C. Beck
Martin Hutzenthaler
Arnulf Jentzen
Benno Kuckuck
35
146
0
22 Dec 2020
B-PINNs: Bayesian Physics-Informed Neural Networks for Forward and
  Inverse PDE Problems with Noisy Data
B-PINNs: Bayesian Physics-Informed Neural Networks for Forward and Inverse PDE Problems with Noisy Data
Liu Yang
Xuhui Meng
George Karniadakis
PINN
186
763
0
13 Mar 2020
1