Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2009.13251
Cited By
v1
v2
v3
v4 (latest)
Deep Learning for Predictive Business Process Monitoring: Review and Benchmark
24 September 2020
Efrén Rama-Maneiro
J. Vidal
Manuel Lama
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Deep Learning for Predictive Business Process Monitoring: Review and Benchmark"
36 / 36 papers shown
Title
Process Outcome Prediction: CNN vs. LSTM (with Attention)
Hans Weytjens
Jochen De Weerdt
AI4TS
57
44
0
14 Apr 2021
A systematic literature review on state-of-the-art deep learning methods for process prediction
Dominic A. Neu
Johannes Lahann
Peter Fettke
AI4CE
62
132
0
22 Jan 2021
Multi-Task Learning with Deep Neural Networks: A Survey
M. Crawshaw
CVBM
217
625
0
10 Sep 2020
The Curious Case of Neural Text Degeneration
Ari Holtzman
Jan Buys
Li Du
Maxwell Forbes
Yejin Choi
199
3,210
0
22 Apr 2019
Exploiting Event Log Event Attributes in RNN Based Prediction
Markku Hinkka
Teemu Lehto
Keijo Heljanko
42
28
0
15 Apr 2019
An Interdisciplinary Comparison of Sequence Modeling Methods for Next-Element Prediction
Niek Tax
Irene Teinemaa
S. V. Zelst
36
61
0
31 Oct 2018
Classifying Process Instances Using Recurrent Neural Networks
Markku Hinkka
Teemu Lehto
Keijo Heljanko
Alexander Jung
39
38
0
16 Sep 2018
Hierarchical Neural Story Generation
Angela Fan
M. Lewis
Yann N. Dauphin
DiffM
183
1,626
0
13 May 2018
Survey and cross-benchmark comparison of remaining time prediction methods in business process monitoring
I. Verenich
Marlon Dumas
M. Rosa
F. Maggi
Irene Teinemaa
AI4TS
56
155
0
08 May 2018
Predictive Process Monitoring Methods: Which One Suits Me Best?
Chiara Di Francescomarino
Chiara Ghidini
F. Maggi
Fredrik P. Milani
36
146
0
06 Apr 2018
Deep contextualized word representations
Matthew E. Peters
Mark Neumann
Mohit Iyyer
Matt Gardner
Christopher Clark
Kenton Lee
Luke Zettlemoyer
NAI
233
11,566
0
15 Feb 2018
LSTM Networks for Data-Aware Remaining Time Prediction of Business Process Instances
Nicoló Navarin
B. Vincenzi
Mirko Polato
A. Sperduti
AI4TS
42
91
0
10 Nov 2017
Outcome-Oriented Predictive Process Monitoring: Review and Benchmark
Irene Teinemaa
Marlon Dumas
M. Rosa
F. Maggi
40
186
0
21 Jul 2017
An Overview of Multi-Task Learning in Deep Neural Networks
Sebastian Ruder
CVBM
159
2,831
0
15 Jun 2017
On Calibration of Modern Neural Networks
Chuan Guo
Geoff Pleiss
Yu Sun
Kilian Q. Weinberger
UQCV
299
5,862
0
14 Jun 2017
Attention Is All You Need
Ashish Vaswani
Noam M. Shazeer
Niki Parmar
Jakob Uszkoreit
Llion Jones
Aidan Gomez
Lukasz Kaiser
Illia Polosukhin
3DV
786
132,363
0
12 Jun 2017
Multi-Task Learning Using Uncertainty to Weigh Losses for Scene Geometry and Semantics
Alex Kendall
Y. Gal
R. Cipolla
3DH
272
3,135
0
19 May 2017
XES Tensorflow - Process Prediction using the Tensorflow Deep-Learning Framework
Joerg Evermann
Jana-Rebecca Rehse
Peter Fettke
45
13
0
03 May 2017
Comparative Study of CNN and RNN for Natural Language Processing
Wenpeng Yin
Katharina Kann
Mo Yu
Hinrich Schütze
79
992
0
07 Feb 2017
Predicting Process Behaviour using Deep Learning
Joerg Evermann
Jana-Rebecca Rehse
Peter Fettke
69
358
0
14 Dec 2016
Predictive Business Process Monitoring with LSTM Neural Networks
Niek Tax
I. Verenich
M. Rosa
Marlon Dumas
54
450
0
07 Dec 2016
Statistical comparison of classifiers through Bayesian hierarchical modelling
Giorgio Corani
A. Benavoli
J. Demšar
Francesca Mangili
Marco Zaffalon
41
55
0
28 Sep 2016
Time for a change: a tutorial for comparing multiple classifiers through Bayesian analysis
A. Benavoli
Giorgio Corani
J. Demšar
Marco Zaffalon
BDL
67
424
0
14 Jun 2016
One-shot Learning with Memory-Augmented Neural Networks
Adam Santoro
Sergey Bartunov
M. Botvinick
Daan Wierstra
Timothy Lillicrap
79
525
0
19 May 2016
Deep Residual Learning for Image Recognition
Kaiming He
Xinming Zhang
Shaoqing Ren
Jian Sun
MedIm
2.2K
194,426
0
10 Dec 2015
Effective Approaches to Attention-based Neural Machine Translation
Thang Luong
Hieu H. Pham
Christopher D. Manning
413
7,969
0
17 Aug 2015
Empirical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling
Junyoung Chung
Çağlar Gülçehre
Kyunghyun Cho
Yoshua Bengio
601
12,741
0
11 Dec 2014
Neural Turing Machines
Alex Graves
Greg Wayne
Ivo Danihelka
108
2,331
0
20 Oct 2014
Going Deeper with Convolutions
Christian Szegedy
Wei Liu
Yangqing Jia
P. Sermanet
Scott E. Reed
Dragomir Anguelov
D. Erhan
Vincent Vanhoucke
Andrew Rabinovich
488
43,694
0
17 Sep 2014
Sequence to Sequence Learning with Neural Networks
Ilya Sutskever
Oriol Vinyals
Quoc V. Le
AIMat
446
20,590
0
10 Sep 2014
Very Deep Convolutional Networks for Large-Scale Image Recognition
Karen Simonyan
Andrew Zisserman
FAtt
MDE
1.7K
100,508
0
04 Sep 2014
Neural Machine Translation by Jointly Learning to Align and Translate
Dzmitry Bahdanau
Kyunghyun Cho
Yoshua Bengio
AIMat
578
27,327
0
01 Sep 2014
Learning Phrase Representations using RNN Encoder-Decoder for Statistical Machine Translation
Kyunghyun Cho
B. V. Merrienboer
Çağlar Gülçehre
Dzmitry Bahdanau
Fethi Bougares
Holger Schwenk
Yoshua Bengio
AIMat
1.1K
23,388
0
03 Jun 2014
Efficient Estimation of Word Representations in Vector Space
Tomas Mikolov
Kai Chen
G. Corrado
J. Dean
3DV
684
31,544
0
16 Jan 2013
What Regularized Auto-Encoders Learn from the Data Generating Distribution
Guillaume Alain
Yoshua Bengio
OOD
DRL
72
505
0
18 Nov 2012
Feature Hashing for Large Scale Multitask Learning
Kilian Q. Weinberger
A. Dasgupta
Josh Attenberg
John Langford
Alex Smola
119
1,023
0
12 Feb 2009
1