ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2009.11732
  4. Cited By
A Unifying Review of Deep and Shallow Anomaly Detection

A Unifying Review of Deep and Shallow Anomaly Detection

24 September 2020
Lukas Ruff
Jacob R. Kauffmann
Robert A. Vandermeulen
G. Montavon
Wojciech Samek
Marius Kloft
Thomas G. Dietterich
Klaus-Robert Muller
    UQCV
ArXivPDFHTML

Papers citing "A Unifying Review of Deep and Shallow Anomaly Detection"

50 / 226 papers shown
Title
Deep Verifier Networks: Verification of Deep Discriminative Models with
  Deep Generative Models
Deep Verifier Networks: Verification of Deep Discriminative Models with Deep Generative Models
Tong Che
Xiaofeng Liu
Site Li
Yubin Ge
Ruixiang Zhang
Caiming Xiong
Yoshua Bengio
71
52
0
18 Nov 2019
Deep Variational Semi-Supervised Novelty Detection
Deep Variational Semi-Supervised Novelty Detection
Tal Daniel
Thanard Kurutach
Aviv Tamar
DRL
UQCV
38
21
0
12 Nov 2019
Self-training with Noisy Student improves ImageNet classification
Self-training with Noisy Student improves ImageNet classification
Qizhe Xie
Minh-Thang Luong
Eduard H. Hovy
Quoc V. Le
NoLa
294
2,387
0
11 Nov 2019
Weakly Supervised Disentanglement with Guarantees
Weakly Supervised Disentanglement with Guarantees
Rui Shu
Yining Chen
Abhishek Kumar
Stefano Ermon
Ben Poole
CoGe
DRL
109
137
0
22 Oct 2019
Efficient Graph Generation with Graph Recurrent Attention Networks
Efficient Graph Generation with Graph Recurrent Attention Networks
Renjie Liao
Yujia Li
Yang Song
Shenlong Wang
C. Nash
William L. Hamilton
David Duvenaud
R. Urtasun
R. Zemel
GNN
123
332
0
02 Oct 2019
Towards neural networks that provably know when they don't know
Towards neural networks that provably know when they don't know
Alexander Meinke
Matthias Hein
OODD
75
141
0
26 Sep 2019
Input complexity and out-of-distribution detection with likelihood-based
  generative models
Input complexity and out-of-distribution detection with likelihood-based generative models
Joan Serrà
David Álvarez
Vicencc Gómez
Olga Slizovskaia
José F. Núñez
Jordi Luque
OODD
134
276
0
25 Sep 2019
On Accurate and Reliable Anomaly Detection for Gas Turbine Combustors: A
  Deep Learning Approach
On Accurate and Reliable Anomaly Detection for Gas Turbine Combustors: A Deep Learning Approach
Weizhong Yan
Lijie Yu
AI4CE
49
146
0
25 Aug 2019
Noise Flow: Noise Modeling with Conditional Normalizing Flows
Noise Flow: Noise Modeling with Conditional Normalizing Flows
A. Abdelhamed
Marcus A. Brubaker
M. S. Brown
44
174
0
22 Aug 2019
GODS: Generalized One-class Discriminative Subspaces for Anomaly
  Detection
GODS: Generalized One-class Discriminative Subspaces for Anomaly Detection
Jue Wang
A. Cherian
CML
51
114
0
16 Aug 2019
Detecting semantic anomalies
Detecting semantic anomalies
Faruk Ahmed
Aaron Courville
43
83
0
13 Aug 2019
Natural Adversarial Examples
Natural Adversarial Examples
Dan Hendrycks
Kevin Zhao
Steven Basart
Jacob Steinhardt
D. Song
OODD
193
1,465
0
16 Jul 2019
Statistical Analysis of Nearest Neighbor Methods for Anomaly Detection
Statistical Analysis of Nearest Neighbor Methods for Anomaly Detection
Xiaoyi Gu
Leman Akoglu
Alessandro Rinaldo
122
96
0
08 Jul 2019
Using Self-Supervised Learning Can Improve Model Robustness and
  Uncertainty
Using Self-Supervised Learning Can Improve Model Robustness and Uncertainty
Dan Hendrycks
Mantas Mazeika
Saurav Kadavath
D. Song
OOD
SSL
56
944
0
28 Jun 2019
A Survey on GANs for Anomaly Detection
A Survey on GANs for Anomaly Detection
Federico Di Mattia
P. Galeone
M. D. Simoni
Emanuele Ghelfi
80
127
0
27 Jun 2019
Unifying machine learning and quantum chemistry -- a deep neural network
  for molecular wavefunctions
Unifying machine learning and quantum chemistry -- a deep neural network for molecular wavefunctions
Kristof T. Schütt
M. Gastegger
A. Tkatchenko
K. Müller
R. Maurer
AI4CE
71
388
0
24 Jun 2019
Connectivity-Optimized Representation Learning via Persistent Homology
Connectivity-Optimized Representation Learning via Persistent Homology
Christoph Hofer
Roland Kwitt
Mandar Dixit
Marc Niethammer
58
77
0
21 Jun 2019
Explanations can be manipulated and geometry is to blame
Explanations can be manipulated and geometry is to blame
Ann-Kathrin Dombrowski
Maximilian Alber
Christopher J. Anders
M. Ackermann
K. Müller
Pan Kessel
AAML
FAtt
78
330
0
19 Jun 2019
Detecting Out-of-Distribution Inputs to Deep Generative Models Using
  Typicality
Detecting Out-of-Distribution Inputs to Deep Generative Models Using Typicality
Eric T. Nalisnick
Akihiro Matsukawa
Yee Whye Teh
Balaji Lakshminarayanan
OODD
47
86
0
07 Jun 2019
Likelihood Ratios for Out-of-Distribution Detection
Likelihood Ratios for Out-of-Distribution Detection
Jie Jessie Ren
Peter J. Liu
Emily Fertig
Jasper Snoek
Ryan Poplin
M. DePristo
Joshua V. Dillon
Balaji Lakshminarayanan
OODD
172
720
0
07 Jun 2019
Deep Semi-Supervised Anomaly Detection
Deep Semi-Supervised Anomaly Detection
Lukas Ruff
Robert A. Vandermeulen
Nico Görnitz
Alexander Binder
Emmanuel Müller
K. Müller
Marius Kloft
UQCV
54
544
0
06 Jun 2019
An Introduction to Variational Autoencoders
An Introduction to Variational Autoencoders
Diederik P. Kingma
Max Welling
BDL
SSL
DRL
74
2,345
0
06 Jun 2019
Can You Trust Your Model's Uncertainty? Evaluating Predictive
  Uncertainty Under Dataset Shift
Can You Trust Your Model's Uncertainty? Evaluating Predictive Uncertainty Under Dataset Shift
Yaniv Ovadia
Emily Fertig
Jie Jessie Ren
Zachary Nado
D. Sculley
Sebastian Nowozin
Joshua V. Dillon
Balaji Lakshminarayanan
Jasper Snoek
UQCV
159
1,688
0
06 Jun 2019
MNIST-C: A Robustness Benchmark for Computer Vision
MNIST-C: A Robustness Benchmark for Computer Vision
Norman Mu
Justin Gilmer
52
209
0
05 Jun 2019
Generating Diverse High-Fidelity Images with VQ-VAE-2
Generating Diverse High-Fidelity Images with VQ-VAE-2
Ali Razavi
Aaron van den Oord
Oriol Vinyals
DRL
BDL
123
1,804
0
02 Jun 2019
Exploiting Epistemic Uncertainty of Anatomy Segmentation for Anomaly
  Detection in Retinal OCT
Exploiting Epistemic Uncertainty of Anatomy Segmentation for Anomaly Detection in Retinal OCT
Philipp Seeböck
J. Orlando
T. Schlegl
S. Waldstein
Hrvoje Bogunović
S. Klimscha
Georg Langs
U. Schmidt-Erfurth
UQCV
88
134
0
29 May 2019
Fixing Bias in Reconstruction-based Anomaly Detection with Lipschitz
  Discriminators
Fixing Bias in Reconstruction-based Anomaly Detection with Lipschitz Discriminators
Alexander Tong
Guy Wolf
Smita Krishnaswamy
27
4
0
26 May 2019
Transferable Multi-Domain State Generator for Task-Oriented Dialogue
  Systems
Transferable Multi-Domain State Generator for Task-Oriented Dialogue Systems
Chien-Sheng Wu
Andrea Madotto
Ehsan Hosseini-Asl
Caiming Xiong
R. Socher
Pascale Fung
73
435
0
21 May 2019
Adversarial Examples Are Not Bugs, They Are Features
Adversarial Examples Are Not Bugs, They Are Features
Andrew Ilyas
Shibani Santurkar
Dimitris Tsipras
Logan Engstrom
Brandon Tran
Aleksander Madry
SILM
89
1,836
0
06 May 2019
Visualizing Deep Networks by Optimizing with Integrated Gradients
Visualizing Deep Networks by Optimizing with Integrated Gradients
Zhongang Qi
Saeed Khorram
Fuxin Li
FAtt
58
123
0
02 May 2019
A critical analysis of self-supervision, or what we can learn from a
  single image
A critical analysis of self-supervision, or what we can learn from a single image
Yuki M. Asano
Christian Rupprecht
Andrea Vedaldi
SSL
64
146
0
30 Apr 2019
Memorizing Normality to Detect Anomaly: Memory-augmented Deep
  Autoencoder for Unsupervised Anomaly Detection
Memorizing Normality to Detect Anomaly: Memory-augmented Deep Autoencoder for Unsupervised Anomaly Detection
Dong Gong
Lingqiao Liu
Vuong Le
Budhaditya Saha
M. Mansour
Svetha Venkatesh
Anton Van Den Hengel
UQCV
47
1,258
0
04 Apr 2019
C2AE: Class Conditioned Auto-Encoder for Open-set Recognition
C2AE: Class Conditioned Auto-Encoder for Open-set Recognition
Poojan Oza
Vishal M. Patel
105
320
0
02 Apr 2019
Benchmarking Neural Network Robustness to Common Corruptions and
  Perturbations
Benchmarking Neural Network Robustness to Common Corruptions and Perturbations
Dan Hendrycks
Thomas G. Dietterich
OOD
VLM
156
3,423
0
28 Mar 2019
OCGAN: One-class Novelty Detection Using GANs with Constrained Latent
  Representations
OCGAN: One-class Novelty Detection Using GANs with Constrained Latent Representations
Pramuditha Perera
Ramesh Nallapati
Bing Xiang
108
525
0
20 Mar 2019
Unmasking Clever Hans Predictors and Assessing What Machines Really
  Learn
Unmasking Clever Hans Predictors and Assessing What Machines Really Learn
Sebastian Lapuschkin
S. Wäldchen
Alexander Binder
G. Montavon
Wojciech Samek
K. Müller
84
1,009
0
26 Feb 2019
Revealing quantum chaos with machine learning
Revealing quantum chaos with machine learning
Y. Kharkov
V. E. Sotskov
A. A. Karazeev
E. Kiktenko
A. Fedorov
AI4CE
54
27
0
25 Feb 2019
On Evaluating Adversarial Robustness
On Evaluating Adversarial Robustness
Nicholas Carlini
Anish Athalye
Nicolas Papernot
Wieland Brendel
Jonas Rauber
Dimitris Tsipras
Ian Goodfellow
Aleksander Madry
Alexey Kurakin
ELM
AAML
81
901
0
18 Feb 2019
Deep Divergence-Based Approach to Clustering
Deep Divergence-Based Approach to Clustering
Michael C. Kampffmeyer
Sigurd Løkse
F. Bianchi
L. Livi
Arnt-Børre Salberg
Robert Jenssen
50
63
0
13 Feb 2019
On the Calibration of Multiclass Classification with Rejection
On the Calibration of Multiclass Classification with Rejection
Chenri Ni
Nontawat Charoenphakdee
Junya Honda
Masashi Sugiyama
36
55
0
30 Jan 2019
Using Pre-Training Can Improve Model Robustness and Uncertainty
Using Pre-Training Can Improve Model Robustness and Uncertainty
Dan Hendrycks
Kimin Lee
Mantas Mazeika
NoLa
67
726
0
28 Jan 2019
Unsupervised speech representation learning using WaveNet autoencoders
Unsupervised speech representation learning using WaveNet autoencoders
J. Chorowski
Ron J. Weiss
Samy Bengio
Aaron van den Oord
SSL
72
318
0
25 Jan 2019
One-Class Convolutional Neural Network
One-Class Convolutional Neural Network
Poojan Oza
Vishal M. Patel
55
160
0
24 Jan 2019
Theoretically Principled Trade-off between Robustness and Accuracy
Theoretically Principled Trade-off between Robustness and Accuracy
Hongyang R. Zhang
Yaodong Yu
Jiantao Jiao
Eric Xing
L. Ghaoui
Michael I. Jordan
127
2,542
0
24 Jan 2019
A PCB Dataset for Defects Detection and Classification
A PCB Dataset for Defects Detection and Classification
Weibo Huang
Peng Wei
28
88
0
24 Jan 2019
MAD-GAN: Multivariate Anomaly Detection for Time Series Data with
  Generative Adversarial Networks
MAD-GAN: Multivariate Anomaly Detection for Time Series Data with Generative Adversarial Networks
Dan Li
Dacheng Chen
Lei Shi
Baihong Jin
Jonathan Goh
See-Kiong Ng
73
773
0
15 Jan 2019
Deep Learning for Anomaly Detection: A Survey
Deep Learning for Anomaly Detection: A Survey
Raghavendra Chalapathy
Sanjay Chawla
AI4TS
144
1,491
0
10 Jan 2019
Recent Advances in Autoencoder-Based Representation Learning
Recent Advances in Autoencoder-Based Representation Learning
Michael Tschannen
Olivier Bachem
Mario Lucic
OOD
SSL
DRL
64
443
0
12 Dec 2018
A Style-Based Generator Architecture for Generative Adversarial Networks
A Style-Based Generator Architecture for Generative Adversarial Networks
Tero Karras
S. Laine
Timo Aila
529
10,540
0
12 Dec 2018
Deep Anomaly Detection with Outlier Exposure
Deep Anomaly Detection with Outlier Exposure
Dan Hendrycks
Mantas Mazeika
Thomas G. Dietterich
OODD
171
1,475
0
11 Dec 2018
Previous
12345
Next