ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1901.10655
36
55

On the Calibration of Multiclass Classification with Rejection

30 January 2019
Chenri Ni
Nontawat Charoenphakdee
Junya Honda
Masashi Sugiyama
ArXivPDFHTML
Abstract

We investigate the problem of multiclass classification with rejection, where a classifier can choose not to make a prediction to avoid critical misclassification. First, we consider an approach based on simultaneous training of a classifier and a rejector, which achieves the state-of-the-art performance in the binary case. We analyze this approach for the multiclass case and derive a general condition for calibration to the Bayes-optimal solution, which suggests that calibration is hard to achieve by general loss functions unlike the binary case. Next, we consider another traditional approach based on confidence scores, in which the existing work focuses on a specific class of losses. We propose rejection criteria for more general losses for this approach and guarantee calibration to the Bayes-optimal solution. Finally, we conduct experiments to validate the relevance of our theoretical findings.

View on arXiv
Comments on this paper