ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2009.10303
  4. Cited By
On the representation and learning of monotone triangular transport maps

On the representation and learning of monotone triangular transport maps

22 September 2020
Ricardo Baptista
Youssef Marzouk
O. Zahm
ArXivPDFHTML

Papers citing "On the representation and learning of monotone triangular transport maps"

14 / 14 papers shown
Title
Verification and Validation for Trustworthy Scientific Machine Learning
Verification and Validation for Trustworthy Scientific Machine Learning
John D. Jakeman
Lorena A. Barba
J. Martins
Thomas O'Leary-Roseberry
AI4CE
80
0
0
21 Feb 2025
Variational Bayesian Optimal Experimental Design with Normalizing Flows
Variational Bayesian Optimal Experimental Design with Normalizing Flows
Jiayuan Dong
Christian L. Jacobsen
Mehdi Khalloufi
Maryam Akram
Wanjiao Liu
Karthik Duraisamy
Xun Huan
BDL
92
7
0
08 Apr 2024
Sparse approximation of triangular transports. Part II: the infinite
  dimensional case
Sparse approximation of triangular transports. Part II: the infinite dimensional case
Jakob Zech
Youssef Marzouk
39
19
0
28 Jul 2021
Benchmarking Simulation-Based Inference
Benchmarking Simulation-Based Inference
Jan-Matthis Lueckmann
Jan Boelts
David S. Greenberg
P. J. Gonçalves
Jakob H. Macke
188
194
0
12 Jan 2021
Learning non-Gaussian graphical models via Hessian scores and triangular
  transport
Learning non-Gaussian graphical models via Hessian scores and triangular transport
Ricardo Baptista
Youssef Marzouk
Rebecca E. Morrison
O. Zahm
49
23
0
08 Jan 2021
Convex Potential Flows: Universal Probability Distributions with Optimal
  Transport and Convex Optimization
Convex Potential Flows: Universal Probability Distributions with Optimal Transport and Convex Optimization
Chin-Wei Huang
Ricky T. Q. Chen
Christos Tsirigotis
Aaron Courville
OT
145
97
0
10 Dec 2020
Normalizing Flows for Probabilistic Modeling and Inference
Normalizing Flows for Probabilistic Modeling and Inference
George Papamakarios
Eric T. Nalisnick
Danilo Jimenez Rezende
S. Mohamed
Balaji Lakshminarayanan
TPM
AI4CE
139
1,662
0
05 Dec 2019
Glow: Generative Flow with Invertible 1x1 Convolutions
Glow: Generative Flow with Invertible 1x1 Convolutions
Diederik P. Kingma
Prafulla Dhariwal
BDL
DRL
212
3,110
0
09 Jul 2018
Neural Autoregressive Flows
Neural Autoregressive Flows
Chin-Wei Huang
David M. Krueger
Alexandre Lacoste
Aaron Courville
DRL
AI4CE
84
439
0
03 Apr 2018
Parallel WaveNet: Fast High-Fidelity Speech Synthesis
Parallel WaveNet: Fast High-Fidelity Speech Synthesis
Aaron van den Oord
Yazhe Li
Igor Babuschkin
Karen Simonyan
Oriol Vinyals
...
Alex Graves
Helen King
T. Walters
Dan Belov
Demis Hassabis
140
858
0
28 Nov 2017
Beyond normality: Learning sparse probabilistic graphical models in the
  non-Gaussian setting
Beyond normality: Learning sparse probabilistic graphical models in the non-Gaussian setting
Rebecca E. Morrison
Ricardo Baptista
Youssef Marzouk
CML
52
26
0
02 Nov 2017
Faster Eigenvector Computation via Shift-and-Invert Preconditioning
Faster Eigenvector Computation via Shift-and-Invert Preconditioning
Dan Garber
Laurent Dinh
Chi Jin
Jascha Narain Sohl-Dickstein
Samy Bengio
Praneeth Netrapalli
Aaron Sidford
185
3,681
0
26 May 2016
RNADE: The real-valued neural autoregressive density-estimator
RNADE: The real-valued neural autoregressive density-estimator
Benigno Uria
Iain Murray
Hugo Larochelle
80
237
0
02 Jun 2013
Bayesian Inference with Optimal Maps
Bayesian Inference with Optimal Maps
Tarek A. El-Moselhy
Youssef M. Marzouk
64
289
0
07 Sep 2011
1