Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2008.08838
Cited By
v1
v2
v3 (latest)
Training Matters: Unlocking Potentials of Deeper Graph Convolutional Neural Networks
20 August 2020
Sitao Luan
Mingde Zhao
Xiao-Wen Chang
Doina Precup
GNN
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Training Matters: Unlocking Potentials of Deeper Graph Convolutional Neural Networks"
21 / 21 papers shown
Title
On Addressing the Limitations of Graph Neural Networks
Sitao Luan
GNN
68
5
0
22 Jun 2023
Complete the Missing Half: Augmenting Aggregation Filtering with Diversification for Graph Convolutional Neural Networks
Sitao Luan
Mingde Zhao
Chenqing Hua
Xiao-Wen Chang
Doina Precup
GNN
59
34
0
21 Dec 2022
Revisiting Heterophily For Graph Neural Networks
Sitao Luan
Chenqing Hua
Qincheng Lu
Jiaqi Zhu
Mingde Zhao
Shuyuan Zhang
Xiaoming Chang
Doina Precup
76
197
0
14 Oct 2022
Large Scale Learning on Non-Homophilous Graphs: New Benchmarks and Strong Simple Methods
Derek Lim
Felix Hohne
Xiuyu Li
Sijia Huang
Vaishnavi Gupta
Omkar Bhalerao
Ser-Nam Lim
125
359
0
27 Oct 2021
Is Heterophily A Real Nightmare For Graph Neural Networks To Do Node Classification?
Sitao Luan
Chenqing Hua
Qincheng Lu
Jiaqi Zhu
Mingde Zhao
Shuyuan Zhang
Xiaoming Chang
Doina Precup
90
115
0
12 Sep 2021
Break the Ceiling: Stronger Multi-scale Deep Graph Convolutional Networks
Sitao Luan
Mingde Zhao
Xiao-Wen Chang
Doina Precup
GNN
78
157
0
05 Jun 2019
DeepGCNs: Can GCNs Go as Deep as CNNs?
Ge Li
Matthias Muller
Ali K. Thabet
Guohao Li
3DPC
GNN
130
1,350
0
07 Apr 2019
LanczosNet: Multi-Scale Deep Graph Convolutional Networks
Renjie Liao
Zhizhen Zhao
R. Urtasun
R. Zemel
GNN
84
228
0
06 Jan 2019
FastGCN: Fast Learning with Graph Convolutional Networks via Importance Sampling
Jie Chen
Tengfei Ma
Cao Xiao
GNN
149
1,517
0
30 Jan 2018
Deeper Insights into Graph Convolutional Networks for Semi-Supervised Learning
Qimai Li
Zhichao Han
Xiao-Ming Wu
GNN
SSL
194
2,830
0
22 Jan 2018
Stochastic Training of Graph Convolutional Networks with Variance Reduction
Jianfei Chen
Jun Zhu
Le Song
GNN
BDL
67
31
0
29 Oct 2017
Inductive Representation Learning on Large Graphs
William L. Hamilton
Z. Ying
J. Leskovec
514
15,319
0
07 Jun 2017
Neural Message Passing for Quantum Chemistry
Justin Gilmer
S. Schoenholz
Patrick F. Riley
Oriol Vinyals
George E. Dahl
598
7,488
0
04 Apr 2017
Geometric deep learning on graphs and manifolds using mixture model CNNs
Federico Monti
Davide Boscaini
Jonathan Masci
Emanuele Rodolà
Jan Svoboda
M. Bronstein
GNN
421
1,824
0
25 Nov 2016
Geometric deep learning: going beyond Euclidean data
M. Bronstein
Joan Bruna
Yann LeCun
Arthur Szlam
P. Vandergheynst
GNN
813
3,293
0
24 Nov 2016
Semi-Supervised Classification with Graph Convolutional Networks
Thomas Kipf
Max Welling
GNN
SSL
665
29,156
0
09 Sep 2016
Convolutional Neural Networks on Graphs with Fast Localized Spectral Filtering
M. Defferrard
Xavier Bresson
P. Vandergheynst
GNN
360
7,671
0
30 Jun 2016
Revisiting Semi-Supervised Learning with Graph Embeddings
Zhilin Yang
William W. Cohen
Ruslan Salakhutdinov
GNN
SSL
174
2,105
0
29 Mar 2016
Weight Normalization: A Simple Reparameterization to Accelerate Training of Deep Neural Networks
Tim Salimans
Diederik P. Kingma
ODL
196
1,943
0
25 Feb 2016
Deep Residual Learning for Image Recognition
Kaiming He
Xinming Zhang
Shaoqing Ren
Jian Sun
MedIm
2.2K
194,426
0
10 Dec 2015
The Emerging Field of Signal Processing on Graphs: Extending High-Dimensional Data Analysis to Networks and Other Irregular Domains
D. Shuman
S. K. Narang
P. Frossard
Antonio Ortega
P. Vandergheynst
138
3,979
0
31 Oct 2012
1