Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2008.08838
Cited By
Training Matters: Unlocking Potentials of Deeper Graph Convolutional Neural Networks
20 August 2020
Sitao Luan
Mingde Zhao
X. Chang
Doina Precup
GNN
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Training Matters: Unlocking Potentials of Deeper Graph Convolutional Neural Networks"
5 / 5 papers shown
Title
Old can be Gold: Better Gradient Flow can Make Vanilla-GCNs Great Again
Ajay Jaiswal
Peihao Wang
Tianlong Chen
Justin F. Rousseau
Ying Ding
Zhangyang Wang
32
10
0
14 Oct 2022
Revisiting Heterophily For Graph Neural Networks
Sitao Luan
Chenqing Hua
Qincheng Lu
Jiaqi Zhu
Mingde Zhao
Shuyuan Zhang
Xiaoming Chang
Doina Precup
41
179
0
14 Oct 2022
On Provable Benefits of Depth in Training Graph Convolutional Networks
Weilin Cong
M. Ramezani
M. Mahdavi
24
73
0
28 Oct 2021
Geometric deep learning on graphs and manifolds using mixture model CNNs
Federico Monti
Davide Boscaini
Jonathan Masci
Emanuele Rodolà
Jan Svoboda
M. Bronstein
GNN
251
1,811
0
25 Nov 2016
Geometric deep learning: going beyond Euclidean data
M. Bronstein
Joan Bruna
Yann LeCun
Arthur Szlam
P. Vandergheynst
GNN
253
3,239
0
24 Nov 2016
1