Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2008.05456
Cited By
Sampling using
S
U
(
N
)
SU(N)
S
U
(
N
)
gauge equivariant flows
12 August 2020
D. Boyda
G. Kanwar
S. Racanière
Danilo Jimenez Rezende
M. S. Albergo
Kyle Cranmer
D. Hackett
P. Shanahan
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Sampling using $SU(N)$ gauge equivariant flows"
50 / 67 papers shown
Title
Path Gradients after Flow Matching
Lorenz Vaitl
Leon Klein
14
0
0
15 May 2025
Learning Chern Numbers of Topological Insulators with Gauge Equivariant Neural Networks
Longde Huang
Oleksandr Balabanov
H. Linander
Mats Granath
Daniel Persson
Jan E. Gerken
46
0
0
24 Feb 2025
Physics-Conditioned Diffusion Models for Lattice Gauge Theory
Qianteng Zhu
Gert Aarts
Wei Wang
K. Zhou
Lei Wang
61
1
0
08 Feb 2025
MatrixNet: Learning over symmetry groups using learned group representations
Lucas Laird
Circe Hsu
Asilata Bapat
Robin Walters
AI4CE
48
0
0
17 Jan 2025
Simulating the Hubbard Model with Equivariant Normalizing Flows
Dominic Schuh
Janik Kreit
Evan Berkowitz
L. Funcke
Thomas Luu
K. Nicoli
Marcel Rodekamp
42
3
0
13 Jan 2025
Does equivariance matter at scale?
Johann Brehmer
S. Behrends
P. D. Haan
Taco S. Cohen
49
11
0
30 Oct 2024
Improving Equivariant Model Training via Constraint Relaxation
Stefanos Pertigkiozoglou
Evangelos Chatzipantazis
Shubhendu Trivedi
Kostas Daniilidis
42
4
0
23 Aug 2024
TASI Lectures on Physics for Machine Learning
Jim Halverson
36
1
0
31 Jul 2024
Neural Approximate Mirror Maps for Constrained Diffusion Models
Berthy Feng
Ricardo Baptista
Katherine Bouman
MedIm
DiffM
48
3
0
18 Jun 2024
Machine learning a fixed point action for SU(3) gauge theory with a gauge equivariant convolutional neural network
Kieran Holland
A. Ipp
David I. Müller
Urs Wenger
AI4CE
32
6
0
12 Jan 2024
Energy based diffusion generator for efficient sampling of Boltzmann distributions
Yan Wang
Ling Guo
Hao Wu
Tao Zhou
DiffM
36
3
0
04 Jan 2024
Multi-Lattice Sampling of Quantum Field Theories via Neural Operator-based Flows
Bálint Máté
Franccois Fleuret
AI4CE
34
0
0
01 Jan 2024
Learning Distributions on Manifolds with Free-form Flows
Peter Sorrenson
Felix Dräxler
Armand Rousselot
Sander Hummerich
Ullrich Kothe
DRL
AI4CE
29
2
0
15 Dec 2023
Z
2
×
Z
2
\mathbb{Z}_2\times \mathbb{Z}_2
Z
2
×
Z
2
Equivariant Quantum Neural Networks: Benchmarking against Classical Neural Networks
Zhongtian Dong
Marçal Comajoan Cara
Gopal Ramesh Dahale
Roy T. Forestano
S. Gleyzer
...
Kyoungchul Kong
Tom Magorsch
Konstantin T. Matchev
Katia Matcheva
Eyup B. Unlu
25
5
0
30 Nov 2023
Scaling Riemannian Diffusion Models
Aaron Lou
Minkai Xu
Stefano Ermon
30
9
0
30 Oct 2023
Generative Modeling on Manifolds Through Mixture of Riemannian Diffusion Processes
Jaehyeong Jo
Sung Ju Hwang
DiffM
37
9
0
11 Oct 2023
SE(3)-Stochastic Flow Matching for Protein Backbone Generation
A. Bose
Tara Akhound-Sadegh
Guillaume Huguet
Kilian Fatras
Jarrid Rector-Brooks
Cheng-Hao Liu
A. Nica
Maksym Korablyov
Michael M. Bronstein
Alexander Tong
DiffM
47
74
0
03 Oct 2023
Accelerating Markov Chain Monte Carlo sampling with diffusion models
N. Hunt-Smith
W. Melnitchouk
F. Ringer
Nobuo Sato
A. Thomas
M. J. White
DiffM
32
15
0
04 Sep 2023
Advances in machine-learning-based sampling motivated by lattice quantum chromodynamics
Kyle Cranmer
G. Kanwar
S. Racanière
Danilo Jimenez Rezende
P. Shanahan
AI4CE
29
27
0
03 Sep 2023
Sampling the lattice Nambu-Goto string using Continuous Normalizing Flows
M. Caselle
E. Cellini
A. Nada
25
14
0
03 Jul 2023
Understanding Deep Generative Models with Generalized Empirical Likelihoods
Suman V. Ravuri
Mélanie Rey
S. Mohamed
M. Deisenroth
VLM
27
5
0
16 Jun 2023
Spontaneous Symmetry Breaking in Generative Diffusion Models
G. Raya
L. Ambrogioni
DiffM
17
30
0
31 May 2023
Statistical Guarantees of Group-Invariant GANs
Ziyu Chen
M. Katsoulakis
Luc Rey-Bellet
Wei-wei Zhu
47
2
0
22 May 2023
Gauge-equivariant pooling layers for preconditioners in lattice QCD
C. Lehner
T. Wettig
AI4CE
17
8
0
20 Apr 2023
Neural Diffeomorphic Non-uniform B-spline Flows
S. Hong
S. Chun
32
1
0
07 Apr 2023
Locality-constrained autoregressive cum conditional normalizing flow for lattice field theory simulations
R. DineshP.
AI4CE
22
0
0
04 Apr 2023
EDGI: Equivariant Diffusion for Planning with Embodied Agents
Johann Brehmer
Joey Bose
P. D. Haan
Taco S. Cohen
DiffM
30
32
0
22 Mar 2023
Geometrical aspects of lattice gauge equivariant convolutional neural networks
J. Aronsson
David I. Müller
Daniel Schuh
31
7
0
20 Mar 2023
Gauge-equivariant neural networks as preconditioners in lattice QCD
C. Lehner
T. Wettig
AI4CE
33
10
0
10 Feb 2023
Sample Complexity of Probability Divergences under Group Symmetry
Ziyu Chen
M. Katsoulakis
Luc Rey-Bellet
Weixia Zhu
32
10
0
03 Feb 2023
Rigid Body Flows for Sampling Molecular Crystal Structures
Jonas Köhler
Michele Invernizzi
P. D. Haan
Frank Noé
AI4CE
39
27
0
26 Jan 2023
Learning Interpolations between Boltzmann Densities
Bálint Máté
Franccois Fleuret
29
23
0
18 Jan 2023
Simulating 2+1D Lattice Quantum Electrodynamics at Finite Density with Neural Flow Wavefunctions
Zhuo Chen
Di Luo
Kaiwen Hu
B. Clark
27
14
0
14 Dec 2022
Aspects of scaling and scalability for flow-based sampling of lattice QCD
Ryan Abbott
M. S. Albergo
Aleksandar Botev
D. Boyda
Kyle Cranmer
...
Ali Razavi
Danilo Jimenez Rezende
F. Romero-López
P. Shanahan
Julian M. Urban
32
33
0
14 Nov 2022
Gauge Equivariant Neural Networks for 2+1D U(1) Gauge Theory Simulations in Hamiltonian Formulation
Di Luo
Shunyue Yuan
J. Stokes
B. Clark
21
14
0
06 Nov 2022
Grassmann Manifold Flows for Stable Shape Generation
Ryoma Yataka
Kazuki Hirashima
Masashi Shiraishi
27
1
0
05 Nov 2022
Deformations of Boltzmann Distributions
Bálint Máté
Franccois Fleuret
OT
28
2
0
25 Oct 2022
Theoretical Guarantees for Permutation-Equivariant Quantum Neural Networks
Louis Schatzki
Martín Larocca
Quynh T. Nguyen
F. Sauvage
M. Cerezo
39
85
0
18 Oct 2022
Gradients should stay on Path: Better Estimators of the Reverse- and Forward KL Divergence for Normalizing Flows
Lorenz Vaitl
K. Nicoli
Shinichi Nakajima
Pan Kessel
61
24
0
17 Jul 2022
Learning Lattice Quantum Field Theories with Equivariant Continuous Flows
Mathis Gerdes
P. D. Haan
Corrado Rainone
Roberto Bondesan
Miranda C. N. Cheng
AI4CE
16
40
0
01 Jul 2022
Simulator-Based Inference with Waldo: Confidence Regions by Leveraging Prediction Algorithms and Posterior Estimators for Inverse Problems
Luca Masserano
T. Dorigo
Rafael Izbicki
Mikael Kuusela
Ann B. Lee
13
11
0
31 May 2022
Symmetry Group Equivariant Architectures for Physics
A. Bogatskiy
S. Ganguly
Thomas Kipf
Risi Kondor
David W. Miller
...
Jan T. Offermann
M. Pettee
P. Shanahan
C. Shimmin
S. Thais
AI4CE
27
27
0
11 Mar 2022
Unsupervised Learning of Group Invariant and Equivariant Representations
R. Winter
Marco Bertolini
Tuan Le
Frank Noé
Djork-Arné Clevert
28
41
0
15 Feb 2022
Applications of Machine Learning to Lattice Quantum Field Theory
D. Boyda
Salvatore Cali
Sam Foreman
L. Funcke
D. Hackett
...
Gert Aarts
A. Alexandru
Xiao-Yong Jin
B. Lucini
P. Shanahan
AI4CE
29
19
0
10 Feb 2022
Structure-preserving GANs
Jeremiah Birrell
M. Katsoulakis
Luc Rey-Bellet
Wei-wei Zhu
GAN
21
18
0
02 Feb 2022
Stochastic normalizing flows as non-equilibrium transformations
M. Caselle
E. Cellini
A. Nada
M. Panero
36
34
0
21 Jan 2022
Machine Learning Trivializing Maps: A First Step Towards Understanding How Flow-Based Samplers Scale Up
L. Debbio
Joe Marsh Rossney
Michael Wilson
16
6
0
31 Dec 2021
Preserving gauge invariance in neural networks
Matteo Favoni
A. Ipp
David I. Müller
Daniel Schuh
13
1
0
21 Dec 2021
Machine Learning in Nuclear Physics
A. Boehnlein
M. Diefenthaler
C. Fanelli
M. Hjorth-Jensen
T. Horn
...
M. Schram
A. Scheinker
Michael S. Smith
Xin-Nian Wang
Veronique Ziegler
AI4CE
37
41
0
04 Dec 2021
Group equivariant neural posterior estimation
Maximilian Dax
Stephen R. Green
J. Gair
Michael Deistler
Bernhard Schölkopf
Jakob H. Macke
BDL
33
31
0
25 Nov 2021
1
2
Next