ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2007.15963
  4. Cited By
Disentangling Human Error from the Ground Truth in Segmentation of
  Medical Images

Disentangling Human Error from the Ground Truth in Segmentation of Medical Images

31 July 2020
Le Zhang
Ryutaro Tanno
Moucheng Xu
Chen Jin
Joseph Jacob
O. Ciccarelli
F. Barkhof
Daniel C. Alexander
    NoLa
ArXivPDFHTML

Papers citing "Disentangling Human Error from the Ground Truth in Segmentation of Medical Images"

11 / 11 papers shown
Title
Learning Confident Classifiers in the Presence of Label Noise
Learning Confident Classifiers in the Presence of Label Noise
Asma Ahmed Hashmi
Aigerim Zhumabayeva
Nikita Kotelevskii
A. Agafonov
Mohammad Yaqub
Maxim Panov
Martin Takávc
NoLa
115
2
0
02 Jan 2023
A Soft STAPLE Algorithm Combined with Anatomical Knowledge
A Soft STAPLE Algorithm Combined with Anatomical Knowledge
Eytan Kats
Jacob Goldberger
H. Greenspan
47
24
0
26 Oct 2019
Let's agree to disagree: learning highly debatable multirater labelling
Let's agree to disagree: learning highly debatable multirater labelling
Carole H. Sudre
B. G. Anson
S. Ingala
C. Lane
Daniel Jimenez
...
Ryutaro Tanno
Lorna Smith
Sébastien Ourselin
H. Jäger
M. Jorge Cardoso
39
26
0
04 Sep 2019
PHiSeg: Capturing Uncertainty in Medical Image Segmentation
PHiSeg: Capturing Uncertainty in Medical Image Segmentation
Christian F. Baumgartner
K. Tezcan
K. Chaitanya
A. Hötker
Urs J. Muehlematter
K. Schawkat
Anton S. Becker
O. Donati
E. Konukoglu
UQCV
36
202
0
07 Jun 2019
Fast Graph Representation Learning with PyTorch Geometric
Fast Graph Representation Learning with PyTorch Geometric
Matthias Fey
J. E. Lenssen
3DH
GNN
3DPC
173
4,303
0
06 Mar 2019
Learning From Noisy Labels By Regularized Estimation Of Annotator
  Confusion
Learning From Noisy Labels By Regularized Estimation Of Annotator Confusion
Ryutaro Tanno
A. Saeedi
S. Sankaranarayanan
Daniel C. Alexander
N. Silberman
NoLa
54
230
0
10 Feb 2019
Morpho-MNIST: Quantitative Assessment and Diagnostics for Representation
  Learning
Morpho-MNIST: Quantitative Assessment and Diagnostics for Representation Learning
Daniel Coelho De Castro
Jeremy Tan
Bernhard Kainz
E. Konukoglu
Ben Glocker
DRL
34
70
0
27 Sep 2018
A Probabilistic U-Net for Segmentation of Ambiguous Images
A Probabilistic U-Net for Segmentation of Ambiguous Images
Simon A. A. Kohl
Bernardino Romera-Paredes
Clemens Meyer
J. Fauw
J. Ledsam
Klaus H. Maier-Hein
S. M. Ali Eslami
Danilo Jimenez Rezende
Olaf Ronneberger
UQCV
SSeg
69
570
0
13 Jun 2018
Learning From Noisy Singly-labeled Data
Learning From Noisy Singly-labeled Data
A. Khetan
Zachary Chase Lipton
Anima Anandkumar
NoLa
47
161
0
13 Dec 2017
U-Net: Convolutional Networks for Biomedical Image Segmentation
U-Net: Convolutional Networks for Biomedical Image Segmentation
Olaf Ronneberger
Philipp Fischer
Thomas Brox
SSeg
3DV
1.3K
76,547
0
18 May 2015
Adam: A Method for Stochastic Optimization
Adam: A Method for Stochastic Optimization
Diederik P. Kingma
Jimmy Ba
ODL
979
149,474
0
22 Dec 2014
1