ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2007.15067
  4. Cited By
dMelodies: A Music Dataset for Disentanglement Learning

dMelodies: A Music Dataset for Disentanglement Learning

29 July 2020
Ashis Pati
Francesco Ferroni
Alexander Lerch
    CoGe
    DRL
ArXivPDFHTML

Papers citing "dMelodies: A Music Dataset for Disentanglement Learning"

34 / 34 papers shown
Title
Disentangled Multidimensional Metric Learning for Music Similarity
Disentangled Multidimensional Metric Learning for Music Similarity
Jongpil Lee
Nicholas J. Bryan
Justin Salamon
Zeyu Jin
Juhan Nam
111
40
0
09 Aug 2020
Decision-Making with Auto-Encoding Variational Bayes
Decision-Making with Auto-Encoding Variational Bayes
Romain Lopez
Pierre Boyeau
Nir Yosef
Michael I. Jordan
Jeffrey Regier
BDL
393
10,591
0
17 Feb 2020
Representing Closed Transformation Paths in Encoded Network Latent Space
Representing Closed Transformation Paths in Encoded Network Latent Space
Marissa Connor
Christopher Rozell
3DPC
DRL
39
28
0
05 Dec 2019
Learning Complex Basis Functions for Invariant Representations of Audio
Learning Complex Basis Functions for Invariant Representations of Audio
Stefan Lattner
M. Dörfler
A. Arzt
42
13
0
13 Jul 2019
Learning to Traverse Latent Spaces for Musical Score Inpainting
Learning to Traverse Latent Spaces for Musical Score Inpainting
Ashis Pati
Alexander Lerch
Gaëtan Hadjeres
57
55
0
02 Jul 2019
Learning Disentangled Representations of Timbre and Pitch for Musical
  Instrument Sounds Using Gaussian Mixture Variational Autoencoders
Learning Disentangled Representations of Timbre and Pitch for Musical Instrument Sounds Using Gaussian Mixture Variational Autoencoders
Yin-Jyun Luo
Kat R. Agres
Dorien Herremans
61
46
0
19 Jun 2019
Deep Music Analogy Via Latent Representation Disentanglement
Deep Music Analogy Via Latent Representation Disentanglement
Ruihan Yang
Dingsu Wang
Ziyu Wang
Tianyao Chen
Junyan Jiang
Gus Xia
CoGe
DRL
55
69
0
09 Jun 2019
On the Transfer of Inductive Bias from Simulation to the Real World: a
  New Disentanglement Dataset
On the Transfer of Inductive Bias from Simulation to the Real World: a New Disentanglement Dataset
Muhammad Waleed Gondal
Manuel Wüthrich
Ðorðe Miladinovic
Francesco Locatello
M. Breidt
V. Volchkov
J. Akpo
Olivier Bachem
Bernhard Schölkopf
Stefan Bauer
OOD
DRL
95
138
0
07 Jun 2019
Musical Composition Style Transfer via Disentangled Timbre
  Representations
Musical Composition Style Transfer via Disentangled Timbre Representations
Yun-Ning Hung
I. Chiang
Yian Chen
Yi-Hsuan Yang
45
40
0
30 May 2019
Challenging Common Assumptions in the Unsupervised Learning of
  Disentangled Representations
Challenging Common Assumptions in the Unsupervised Learning of Disentangled Representations
Francesco Locatello
Stefan Bauer
Mario Lucic
Gunnar Rätsch
Sylvain Gelly
Bernhard Schölkopf
Olivier Bachem
OOD
115
1,466
0
29 Nov 2018
Neural-Symbolic VQA: Disentangling Reasoning from Vision and Language
  Understanding
Neural-Symbolic VQA: Disentangling Reasoning from Vision and Language Understanding
Kexin Yi
Jiajun Wu
Chuang Gan
Antonio Torralba
Pushmeet Kohli
J. Tenenbaum
NAI
84
608
0
04 Oct 2018
MIDI-VAE: Modeling Dynamics and Instrumentation of Music with
  Applications to Style Transfer
MIDI-VAE: Modeling Dynamics and Instrumentation of Music with Applications to Style Transfer
Gino Brunner
Andres Konrad
Yuyi Wang
Roger Wattenhofer
59
133
0
20 Sep 2018
Understanding disentangling in $β$-VAE
Understanding disentangling in βββ-VAE
Christopher P. Burgess
I. Higgins
Arka Pal
Loic Matthey
Nicholas Watters
Guillaume Desjardins
Alexander Lerchner
CoGe
DRL
65
829
0
10 Apr 2018
A Hierarchical Latent Vector Model for Learning Long-Term Structure in
  Music
A Hierarchical Latent Vector Model for Learning Long-Term Structure in Music
Adam Roberts
Jesse Engel
Colin Raffel
Curtis Hawthorne
Douglas Eck
BDL
68
479
0
13 Mar 2018
Disentangling by Factorising
Disentangling by Factorising
Hyunjik Kim
A. Mnih
CoGe
OOD
62
1,348
0
16 Feb 2018
Learning Deep Disentangled Embeddings with the F-Statistic Loss
Learning Deep Disentangled Embeddings with the F-Statistic Loss
Karl Ridgeway
Michael C. Mozer
FedML
DRL
CoGe
56
218
0
14 Feb 2018
Latent Constraints: Learning to Generate Conditionally from
  Unconditional Generative Models
Latent Constraints: Learning to Generate Conditionally from Unconditional Generative Models
Jesse Engel
Matthew Hoffman
Adam Roberts
DRL
79
140
0
15 Nov 2017
Neural Discrete Representation Learning
Neural Discrete Representation Learning
Aaron van den Oord
Oriol Vinyals
Koray Kavukcuoglu
BDL
SSL
OCL
226
5,008
0
02 Nov 2017
Variational Inference of Disentangled Latent Concepts from Unlabeled
  Observations
Variational Inference of Disentangled Latent Concepts from Unlabeled Observations
Abhishek Kumar
P. Sattigeri
Avinash Balakrishnan
BDL
DRL
81
523
0
02 Nov 2017
Unsupervised Learning of Disentangled and Interpretable Representations
  from Sequential Data
Unsupervised Learning of Disentangled and Interpretable Representations from Sequential Data
Wei-Ning Hsu
Yu Zhang
James R. Glass
BDL
SSL
78
352
0
22 Sep 2017
GLSR-VAE: Geodesic Latent Space Regularization for Variational
  AutoEncoder Architectures
GLSR-VAE: Geodesic Latent Space Regularization for Variational AutoEncoder Architectures
Gaëtan Hadjeres
Frank Nielsen
F. Pachet
DRL
48
65
0
14 Jul 2017
Fader Networks: Manipulating Images by Sliding Attributes
Fader Networks: Manipulating Images by Sliding Attributes
Guillaume Lample
Neil Zeghidour
Nicolas Usunier
Antoine Bordes
Ludovic Denoyer
MarcÁurelio Ranzato
DRL
GAN
96
545
0
01 Jun 2017
Learning Disentangled Representations with Semi-Supervised Deep
  Generative Models
Learning Disentangled Representations with Semi-Supervised Deep Generative Models
Siddharth Narayanaswamy
Brooks Paige
Jan-Willem van de Meent
Alban Desmaison
Noah D. Goodman
Pushmeet Kohli
Frank Wood
Philip Torr
DRL
CoGe
117
362
0
01 Jun 2017
Multi-Level Variational Autoencoder: Learning Disentangled
  Representations from Grouped Observations
Multi-Level Variational Autoencoder: Learning Disentangled Representations from Grouped Observations
Diane Bouchacourt
Ryota Tomioka
Sebastian Nowozin
BDL
OOD
DRL
56
313
0
24 May 2017
Semantically Decomposing the Latent Spaces of Generative Adversarial
  Networks
Semantically Decomposing the Latent Spaces of Generative Adversarial Networks
Chris Donahue
Zachary Chase Lipton
Akshay Balsubramani
Julian McAuley
GAN
65
120
0
22 May 2017
Transfer learning for music classification and regression tasks
Transfer learning for music classification and regression tasks
Keunwoo Choi
Gyorgy Fazekas
Mark Sandler
Kyunghyun Cho
168
229
0
27 Mar 2017
DeepBach: a Steerable Model for Bach Chorales Generation
DeepBach: a Steerable Model for Bach Chorales Generation
Gaëtan Hadjeres
F. Pachet
Frank Nielsen
78
438
0
03 Dec 2016
Improving Variational Inference with Inverse Autoregressive Flow
Improving Variational Inference with Inverse Autoregressive Flow
Diederik P. Kingma
Tim Salimans
Rafal Jozefowicz
Xi Chen
Ilya Sutskever
Max Welling
BDL
DRL
137
1,818
0
15 Jun 2016
InfoGAN: Interpretable Representation Learning by Information Maximizing
  Generative Adversarial Nets
InfoGAN: Interpretable Representation Learning by Information Maximizing Generative Adversarial Nets
Xi Chen
Yan Duan
Rein Houthooft
John Schulman
Ilya Sutskever
Pieter Abbeel
GAN
157
4,235
0
12 Jun 2016
Deep Convolutional Inverse Graphics Network
Deep Convolutional Inverse Graphics Network
Tejas D. Kulkarni
William F. Whitney
Pushmeet Kohli
J. Tenenbaum
DRL
BDL
103
929
0
11 Mar 2015
Adam: A Method for Stochastic Optimization
Adam: A Method for Stochastic Optimization
Diederik P. Kingma
Jimmy Ba
ODL
1.8K
150,039
0
22 Dec 2014
Deep Learning Face Attributes in the Wild
Deep Learning Face Attributes in the Wild
Ziwei Liu
Ping Luo
Xiaogang Wang
Xiaoou Tang
CVBM
241
8,402
0
28 Nov 2014
Semi-Supervised Learning with Deep Generative Models
Semi-Supervised Learning with Deep Generative Models
Diederik P. Kingma
Danilo Jimenez Rezende
S. Mohamed
Max Welling
GAN
SSL
BDL
85
2,740
0
20 Jun 2014
Representation Learning: A Review and New Perspectives
Representation Learning: A Review and New Perspectives
Yoshua Bengio
Aaron Courville
Pascal Vincent
OOD
SSL
256
12,435
0
24 Jun 2012
1