ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2007.01926
  4. Cited By
Unsupervised Learning of Lagrangian Dynamics from Images for Prediction
  and Control

Unsupervised Learning of Lagrangian Dynamics from Images for Prediction and Control

3 July 2020
Yaofeng Desmond Zhong
Naomi Ehrich Leonard
    DRL
    AI4CE
ArXivPDFHTML

Papers citing "Unsupervised Learning of Lagrangian Dynamics from Images for Prediction and Control"

33 / 33 papers shown
Title
A Riemannian Framework for Learning Reduced-order Lagrangian Dynamics
A Riemannian Framework for Learning Reduced-order Lagrangian Dynamics
Katharina Friedl
Noémie Jaquier
Jens Lundell
Tamim Asfour
Danica Kragic
AI4CE
79
0
0
24 Oct 2024
Learning Physics From Video: Unsupervised Physical Parameter Estimation for Continuous Dynamical Systems
Learning Physics From Video: Unsupervised Physical Parameter Estimation for Continuous Dynamical Systems
Alejandro Castañeda Garcia
Jan van Gemert
Daan Brinks
Nergis Tömen
56
0
0
02 Oct 2024
Lagrangian Neural Networks
Lagrangian Neural Networks
M. Cranmer
S. Greydanus
Stephan Hoyer
Peter W. Battaglia
D. Spergel
S. Ho
PINN
165
433
0
10 Mar 2020
Dissipative SymODEN: Encoding Hamiltonian Dynamics with Dissipation and
  Control into Deep Learning
Dissipative SymODEN: Encoding Hamiltonian Dynamics with Dissipation and Control into Deep Learning
Yaofeng Desmond Zhong
Biswadip Dey
Amit Chakraborty
PINN
AI4CE
63
79
0
20 Feb 2020
Decision-Making with Auto-Encoding Variational Bayes
Decision-Making with Auto-Encoding Variational Bayes
Romain Lopez
Pierre Boyeau
Nir Yosef
Michael I. Jordan
Jeffrey Regier
BDL
321
10,591
0
17 Feb 2020
PyTorch: An Imperative Style, High-Performance Deep Learning Library
PyTorch: An Imperative Style, High-Performance Deep Learning Library
Adam Paszke
Sam Gross
Francisco Massa
Adam Lerer
James Bradbury
...
Sasank Chilamkurthy
Benoit Steiner
Lu Fang
Junjie Bai
Soumith Chintala
ODL
361
42,299
0
03 Dec 2019
Dream to Control: Learning Behaviors by Latent Imagination
Dream to Control: Learning Behaviors by Latent Imagination
Danijar Hafner
Timothy Lillicrap
Jimmy Ba
Mohammad Norouzi
VLM
108
1,349
0
03 Dec 2019
Variational Integrator Networks for Physically Structured Embeddings
Variational Integrator Networks for Physically Structured Embeddings
Steindór Sæmundsson
Alexander Terenin
Katja Hofmann
M. Deisenroth
GNN
AI4CE
45
50
0
21 Oct 2019
Structured Object-Aware Physics Prediction for Video Modeling and
  Planning
Structured Object-Aware Physics Prediction for Video Modeling and Planning
Jannik Kossen
Karl Stelzner
Marcel Hussing
C. Voelcker
Kristian Kersting
OCL
61
70
0
06 Oct 2019
Hamiltonian Generative Networks
Hamiltonian Generative Networks
Peter Toth
Danilo Jimenez Rezende
Andrew Jaegle
S. Racanière
Aleksandar Botev
I. Higgins
BDL
DRL
AI4CE
GAN
59
217
0
30 Sep 2019
Hamiltonian Graph Networks with ODE Integrators
Hamiltonian Graph Networks with ODE Integrators
Alvaro Sanchez-Gonzalez
V. Bapst
Kyle Cranmer
Peter W. Battaglia
AI4CE
83
178
0
27 Sep 2019
Symplectic ODE-Net: Learning Hamiltonian Dynamics with Control
Symplectic ODE-Net: Learning Hamiltonian Dynamics with Control
Yaofeng Desmond Zhong
Biswadip Dey
Amit Chakraborty
PINN
86
271
0
26 Sep 2019
Prediction, Consistency, Curvature: Representation Learning for
  Locally-Linear Control
Prediction, Consistency, Curvature: Representation Learning for Locally-Linear Control
Nir Levine
Yinlam Chow
Rui Shu
Ang Li
Mohammad Ghavamzadeh
Hung Bui
39
30
0
04 Sep 2019
Deep Lagrangian Networks: Using Physics as Model Prior for Deep Learning
Deep Lagrangian Networks: Using Physics as Model Prior for Deep Learning
M. Lutter
Christian Ritter
Jan Peters
PINN
AI4CE
58
376
0
10 Jul 2019
Unsupervised Learning of Object Keypoints for Perception and Control
Unsupervised Learning of Object Keypoints for Perception and Control
Tejas D. Kulkarni
Ankush Gupta
Catalin Ionescu
Sebastian Borgeaud
Malcolm Reynolds
Andrew Zisserman
Volodymyr Mnih
SSL
OCL
42
195
0
19 Jun 2019
Unsupervised Learning of Object Structure and Dynamics from Videos
Unsupervised Learning of Object Structure and Dynamics from Videos
Matthias Minderer
Chen Sun
Ruben Villegas
Forrester Cole
Kevin Patrick Murphy
Honglak Lee
72
150
0
19 Jun 2019
Hamiltonian Neural Networks
Hamiltonian Neural Networks
S. Greydanus
Misko Dzamba
J. Yosinski
PINN
AI4CE
100
889
0
04 Jun 2019
Physics-as-Inverse-Graphics: Unsupervised Physical Parameter Estimation
  from Video
Physics-as-Inverse-Graphics: Unsupervised Physical Parameter Estimation from Video
Miguel Jaques
Michael G. Burke
Timothy M. Hospedales
VGen
PINN
89
45
0
27 May 2019
COBRA: Data-Efficient Model-Based RL through Unsupervised Object
  Discovery and Curiosity-Driven Exploration
COBRA: Data-Efficient Model-Based RL through Unsupervised Object Discovery and Curiosity-Driven Exploration
Nicholas Watters
Loic Matthey
Matko Bosnjak
Christopher P. Burgess
Alexander Lerchner
OffRL
106
117
0
22 May 2019
Visual Foresight: Model-Based Deep Reinforcement Learning for
  Vision-Based Robotic Control
Visual Foresight: Model-Based Deep Reinforcement Learning for Vision-Based Robotic Control
F. Ebert
Chelsea Finn
Sudeep Dasari
Annie Xie
Alex X. Lee
Sergey Levine
SSL
106
385
0
03 Dec 2018
Learning Latent Dynamics for Planning from Pixels
Learning Latent Dynamics for Planning from Pixels
Danijar Hafner
Timothy Lillicrap
Ian S. Fischer
Ruben Villegas
David R Ha
Honglak Lee
James Davidson
BDL
84
1,430
0
12 Nov 2018
Neural Ordinary Differential Equations
Neural Ordinary Differential Equations
T. Chen
Yulia Rubanova
J. Bettencourt
David Duvenaud
AI4CE
341
5,081
0
19 Jun 2018
Graph networks as learnable physics engines for inference and control
Graph networks as learnable physics engines for inference and control
Alvaro Sanchez-Gonzalez
N. Heess
Jost Tobias Springenberg
J. Merel
Martin Riedmiller
R. Hadsell
Peter W. Battaglia
GNN
AI4CE
PINN
OCL
174
599
0
04 Jun 2018
Hyperspherical Variational Auto-Encoders
Hyperspherical Variational Auto-Encoders
Tim R. Davidson
Luca Falorsi
Nicola De Cao
Thomas Kipf
Jakub M. Tomczak
DRL
BDL
100
383
0
03 Apr 2018
Quantifying Translation-Invariance in Convolutional Neural Networks
Quantifying Translation-Invariance in Convolutional Neural Networks
Eric Kauderer-Abrams
53
112
0
10 Dec 2017
A Disentangled Recognition and Nonlinear Dynamics Model for Unsupervised
  Learning
A Disentangled Recognition and Nonlinear Dynamics Model for Unsupervised Learning
Marco Fraccaro
Simon Kamronn
Ulrich Paquet
Ole Winther
BDL
61
283
0
16 Oct 2017
Visual Interaction Networks
Visual Interaction Networks
Nicholas Watters
Andrea Tacchetti
T. Weber
Razvan Pascanu
Peter W. Battaglia
Daniel Zoran
PINN
3DH
84
278
0
05 Jun 2017
Interaction Networks for Learning about Objects, Relations and Physics
Interaction Networks for Learning about Objects, Relations and Physics
Peter W. Battaglia
Razvan Pascanu
Matthew Lai
Danilo Jimenez Rezende
Koray Kavukcuoglu
AI4CE
OCL
PINN
GNN
506
1,407
0
01 Dec 2016
OpenAI Gym
OpenAI Gym
Greg Brockman
Vicki Cheung
Ludwig Pettersson
Jonas Schneider
John Schulman
Jie Tang
Wojciech Zaremba
OffRL
ODL
204
5,073
0
05 Jun 2016
Deep Residual Learning for Image Recognition
Deep Residual Learning for Image Recognition
Kaiming He
Xinming Zhang
Shaoqing Ren
Jian Sun
MedIm
1.9K
193,426
0
10 Dec 2015
Embed to Control: A Locally Linear Latent Dynamics Model for Control
  from Raw Images
Embed to Control: A Locally Linear Latent Dynamics Model for Control from Raw Images
Manuel Watter
Jost Tobias Springenberg
Joschka Boedecker
Martin Riedmiller
BDL
63
844
0
24 Jun 2015
Spatial Transformer Networks
Spatial Transformer Networks
Max Jaderberg
Karen Simonyan
Andrew Zisserman
Koray Kavukcuoglu
292
7,379
0
05 Jun 2015
Sequence to Sequence Learning with Neural Networks
Sequence to Sequence Learning with Neural Networks
Ilya Sutskever
Oriol Vinyals
Quoc V. Le
AIMat
374
20,528
0
10 Sep 2014
1