ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2007.01760
  4. Cited By
Explainable Deep One-Class Classification

Explainable Deep One-Class Classification

3 July 2020
Philipp Liznerski
Lukas Ruff
Robert A. Vandermeulen
Billy Joe Franks
Marius Kloft
Klaus-Robert Muller
ArXivPDFHTML

Papers citing "Explainable Deep One-Class Classification"

37 / 37 papers shown
Title
Detection of Aerial Spoofing Attacks to LEO Satellite Systems via Deep Learning
Detection of Aerial Spoofing Attacks to LEO Satellite Systems via Deep Learning
Jos Wigchert
Savio Sciancalepore
Gabriele Oligeri
95
0
0
20 Dec 2024
A Unifying Review of Deep and Shallow Anomaly Detection
A Unifying Review of Deep and Shallow Anomaly Detection
Lukas Ruff
Jacob R. Kauffmann
Robert A. Vandermeulen
G. Montavon
Wojciech Samek
Marius Kloft
Thomas G. Dietterich
Klaus-Robert Muller
UQCV
64
790
0
24 Sep 2020
Encoding Structure-Texture Relation with P-Net for Anomaly Detection in
  Retinal Images
Encoding Structure-Texture Relation with P-Net for Anomaly Detection in Retinal Images
Kang Zhou
Yuting Xiao
Jianlong Yang
Jun Cheng
Wen Liu
Weixin Luo
Zaiwang Gu
Jiang-Dong Liu
Shenghua Gao
MedIm
69
117
0
09 Aug 2020
Fairwashing Explanations with Off-Manifold Detergent
Fairwashing Explanations with Off-Manifold Detergent
Christopher J. Anders
Plamen Pasliev
Ann-Kathrin Dombrowski
K. Müller
Pan Kessel
FAtt
FaML
42
96
0
20 Jul 2020
Rethinking Assumptions in Deep Anomaly Detection
Rethinking Assumptions in Deep Anomaly Detection
Lukas Ruff
Robert A. Vandermeulen
Billy Joe Franks
Klaus-Robert Muller
Marius Kloft
61
89
0
30 May 2020
Classification-Based Anomaly Detection for General Data
Classification-Based Anomaly Detection for General Data
Liron Bergman
Yedid Hoshen
47
348
0
05 May 2020
Explaining Deep Neural Networks and Beyond: A Review of Methods and
  Applications
Explaining Deep Neural Networks and Beyond: A Review of Methods and Applications
Wojciech Samek
G. Montavon
Sebastian Lapuschkin
Christopher J. Anders
K. Müller
XAI
101
82
0
17 Mar 2020
DROCC: Deep Robust One-Class Classification
DROCC: Deep Robust One-Class Classification
Sachin Goyal
Aditi Raghunathan
Moksh Jain
H. Simhadri
Prateek Jain
VLM
57
163
0
28 Feb 2020
Iterative energy-based projection on a normal data manifold for anomaly
  localization
Iterative energy-based projection on a normal data manifold for anomaly localization
David Dehaene
Oriel Frigo
Sébastien Combrexelle
P. Eline
32
145
0
10 Feb 2020
Attribute Restoration Framework for Anomaly Detection
Attribute Restoration Framework for Anomaly Detection
Chaoqin Huang
Fei Ye
Jinkun Cao
Maosen Li
Ya Zhang
Cewu Lu
91
49
0
25 Nov 2019
Attention Guided Anomaly Localization in Images
Attention Guided Anomaly Localization in Images
Shashanka Venkataramanan
Kuan-Chuan Peng
Rajat Vikram Singh
Abhijit Mahalanobis
48
22
0
19 Nov 2019
Towards Visually Explaining Variational Autoencoders
Towards Visually Explaining Variational Autoencoders
Wenqian Liu
Runze Li
Meng Zheng
Srikrishna Karanam
Ziyan Wu
B. Bhanu
Richard J. Radke
Mario Sznaier
84
217
0
18 Nov 2019
Using Self-Supervised Learning Can Improve Model Robustness and
  Uncertainty
Using Self-Supervised Learning Can Improve Model Robustness and Uncertainty
Dan Hendrycks
Mantas Mazeika
Saurav Kadavath
D. Song
OOD
SSL
47
940
0
28 Jun 2019
Deep Semi-Supervised Anomaly Detection
Deep Semi-Supervised Anomaly Detection
Lukas Ruff
Robert A. Vandermeulen
Nico Görnitz
Alexander Binder
Emmanuel Müller
K. Müller
Marius Kloft
UQCV
47
543
0
06 Jun 2019
Unmasking Clever Hans Predictors and Assessing What Machines Really
  Learn
Unmasking Clever Hans Predictors and Assessing What Machines Really Learn
Sebastian Lapuschkin
S. Wäldchen
Alexander Binder
G. Montavon
Wojciech Samek
K. Müller
78
1,005
0
26 Feb 2019
Deep Anomaly Detection with Outlier Exposure
Deep Anomaly Detection with Outlier Exposure
Dan Hendrycks
Mantas Mazeika
Thomas G. Dietterich
OODD
143
1,468
0
11 Dec 2018
Deep Anomaly Detection Using Geometric Transformations
Deep Anomaly Detection Using Geometric Transformations
I. Golan
Ran El-Yaniv
71
603
0
28 May 2018
Towards Explaining Anomalies: A Deep Taylor Decomposition of One-Class
  Models
Towards Explaining Anomalies: A Deep Taylor Decomposition of One-Class Models
Jacob R. Kauffmann
K. Müller
G. Montavon
DRL
67
96
0
16 May 2018
Social GAN: Socially Acceptable Trajectories with Generative Adversarial
  Networks
Social GAN: Socially Acceptable Trajectories with Generative Adversarial Networks
Agrim Gupta
Justin Johnson
Li Fei-Fei
Silvio Savarese
Alexandre Alahi
GAN
151
1,895
0
29 Mar 2018
Anomaly Detection using One-Class Neural Networks
Anomaly Detection using One-Class Neural Networks
Raghavendra Chalapathy
A. Menon
Sanjay Chawla
UQCV
48
395
0
18 Feb 2018
Fashion-MNIST: a Novel Image Dataset for Benchmarking Machine Learning
  Algorithms
Fashion-MNIST: a Novel Image Dataset for Benchmarking Machine Learning Algorithms
Han Xiao
Kashif Rasul
Roland Vollgraf
211
8,807
0
25 Aug 2017
Methods for Interpreting and Understanding Deep Neural Networks
Methods for Interpreting and Understanding Deep Neural Networks
G. Montavon
Wojciech Samek
K. Müller
FaML
276
2,254
0
24 Jun 2017
Safe Model-based Reinforcement Learning with Stability Guarantees
Safe Model-based Reinforcement Learning with Stability Guarantees
Felix Berkenkamp
M. Turchetta
Angela P. Schoellig
Andreas Krause
141
845
0
23 May 2017
Unsupervised Anomaly Detection with Generative Adversarial Networks to
  Guide Marker Discovery
Unsupervised Anomaly Detection with Generative Adversarial Networks to Guide Marker Discovery
T. Schlegl
Philipp Seeböck
S. Waldstein
U. Schmidt-Erfurth
Georg Langs
MedIm
GAN
73
2,219
0
17 Mar 2017
Axiomatic Attribution for Deep Networks
Axiomatic Attribution for Deep Networks
Mukund Sundararajan
Ankur Taly
Qiqi Yan
OOD
FAtt
149
5,920
0
04 Mar 2017
Reluplex: An Efficient SMT Solver for Verifying Deep Neural Networks
Reluplex: An Efficient SMT Solver for Verifying Deep Neural Networks
Guy Katz
Clark W. Barrett
D. Dill
Kyle D. Julian
Mykel Kochenderfer
AAML
297
1,849
0
03 Feb 2017
Understanding the Effective Receptive Field in Deep Convolutional Neural
  Networks
Understanding the Effective Receptive Field in Deep Convolutional Neural Networks
Wenjie Luo
Yujia Li
R. Urtasun
R. Zemel
HAI
79
1,789
0
15 Jan 2017
Deep-Anomaly: Fully Convolutional Neural Network for Fast Anomaly
  Detection in Crowded Scenes
Deep-Anomaly: Fully Convolutional Neural Network for Fast Anomaly Detection in Crowded Scenes
Mohammad Sabokrou
Mohsen Fayyaz
Mahmood Fathy
Zahra Moayed
Reinhard Klette
69
430
0
03 Sep 2016
Fully Convolutional Networks for Semantic Segmentation
Fully Convolutional Networks for Semantic Segmentation
Evan Shelhamer
Jonathan Long
Trevor Darrell
VOS
SSeg
422
37,704
0
20 May 2016
Not Just a Black Box: Learning Important Features Through Propagating
  Activation Differences
Not Just a Black Box: Learning Important Features Through Propagating Activation Differences
Avanti Shrikumar
Peyton Greenside
A. Shcherbina
A. Kundaje
FAtt
74
782
0
05 May 2016
"Why Should I Trust You?": Explaining the Predictions of Any Classifier
"Why Should I Trust You?": Explaining the Predictions of Any Classifier
Marco Tulio Ribeiro
Sameer Singh
Carlos Guestrin
FAtt
FaML
772
16,828
0
16 Feb 2016
Analyzing Classifiers: Fisher Vectors and Deep Neural Networks
Analyzing Classifiers: Fisher Vectors and Deep Neural Networks
Sebastian Bach
Alexander Binder
G. Montavon
K. Müller
Wojciech Samek
76
199
0
01 Dec 2015
You Only Look Once: Unified, Real-Time Object Detection
You Only Look Once: Unified, Real-Time Object Detection
Joseph Redmon
S. Divvala
Ross B. Girshick
Ali Farhadi
ObjD
616
36,643
0
08 Jun 2015
Learning Deconvolution Network for Semantic Segmentation
Learning Deconvolution Network for Semantic Segmentation
Hyeonwoo Noh
Seunghoon Hong
Bohyung Han
SSeg
191
4,166
0
17 May 2015
Adam: A Method for Stochastic Optimization
Adam: A Method for Stochastic Optimization
Diederik P. Kingma
Jimmy Ba
ODL
1.2K
149,474
0
22 Dec 2014
Very Deep Convolutional Networks for Large-Scale Image Recognition
Very Deep Convolutional Networks for Large-Scale Image Recognition
Karen Simonyan
Andrew Zisserman
FAtt
MDE
1.1K
99,991
0
04 Sep 2014
Deep Inside Convolutional Networks: Visualising Image Classification
  Models and Saliency Maps
Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps
Karen Simonyan
Andrea Vedaldi
Andrew Zisserman
FAtt
219
7,252
0
20 Dec 2013
1