ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1512.00172
19
198

Analyzing Classifiers: Fisher Vectors and Deep Neural Networks

1 December 2015
Sebastian Bach
Alexander Binder
G. Montavon
K. Müller
Wojciech Samek
ArXivPDFHTML
Abstract

Fisher Vector classifiers and Deep Neural Networks (DNNs) are popular and successful algorithms for solving image classification problems. However, both are generally considered `black box' predictors as the non-linear transformations involved have so far prevented transparent and interpretable reasoning. Recently, a principled technique, Layer-wise Relevance Propagation (LRP), has been developed in order to better comprehend the inherent structured reasoning of complex nonlinear classification models such as Bag of Feature models or DNNs. In this paper we (1) extend the LRP framework also for Fisher Vector classifiers and then use it as analysis tool to (2) quantify the importance of context for classification, (3) qualitatively compare DNNs against FV classifiers in terms of important image regions and (4) detect potential flaws and biases in data. All experiments are performed on the PASCAL VOC 2007 data set.

View on arXiv
Comments on this paper