ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2006.12631
  4. Cited By
Fast and Flexible Temporal Point Processes with Triangular Maps
v1v2 (latest)

Fast and Flexible Temporal Point Processes with Triangular Maps

22 June 2020
Oleksandr Shchur
Nicholas Gao
Marin Bilovs
Stephan Günnemann
ArXiv (abs)PDFHTML

Papers citing "Fast and Flexible Temporal Point Processes with Triangular Maps"

29 / 29 papers shown
Title
Transformer Hawkes Process
Transformer Hawkes Process
Simiao Zuo
Haoming Jiang
Zichong Li
T. Zhao
H. Zha
AI4TS
77
295
0
21 Feb 2020
Normalizing Flows for Probabilistic Modeling and Inference
Normalizing Flows for Probabilistic Modeling and Inference
George Papamakarios
Eric T. Nalisnick
Danilo Jimenez Rezende
S. Mohamed
Balaji Lakshminarayanan
TPMAI4CE
207
1,697
0
05 Dec 2019
PyTorch: An Imperative Style, High-Performance Deep Learning Library
PyTorch: An Imperative Style, High-Performance Deep Learning Library
Adam Paszke
Sam Gross
Francisco Massa
Adam Lerer
James Bradbury
...
Sasank Chilamkurthy
Benoit Steiner
Lu Fang
Junjie Bai
Soumith Chintala
ODL
511
42,449
0
03 Dec 2019
Uncertainty on Asynchronous Time Event Prediction
Uncertainty on Asynchronous Time Event Prediction
Marin Bilos
Bertrand Charpentier
Stephan Günnemann
AI4TS
49
44
0
13 Nov 2019
Intensity-Free Learning of Temporal Point Processes
Intensity-Free Learning of Temporal Point Processes
Oleksandr Shchur
Marin Bilos
Stephan Günnemann
AI4TS
61
172
0
26 Sep 2019
Monte Carlo Gradient Estimation in Machine Learning
Monte Carlo Gradient Estimation in Machine Learning
S. Mohamed
Mihaela Rosca
Michael Figurnov
A. Mnih
72
412
0
25 Jun 2019
Neural Spline Flows
Neural Spline Flows
Conor Durkan
Artur Bekasov
Iain Murray
George Papamakarios
DRL
178
775
0
10 Jun 2019
Fully Neural Network based Model for General Temporal Point Processes
Fully Neural Network based Model for General Temporal Point Processes
T. Omi
N. Ueda
Kazuyuki Aihara
BDLAI4TS
48
179
0
23 May 2019
Moment-Based Variational Inference for Markov Jump Processes
Moment-Based Variational Inference for Markov Jump Processes
C. Wildner
Heinz Koeppl
56
10
0
14 May 2019
Sum-of-Squares Polynomial Flow
Sum-of-Squares Polynomial Flow
P. Jaini
Kira A. Selby
Yaoliang Yu
TPM
59
143
0
07 May 2019
Efficient Bayesian Inference of Sigmoidal Gaussian Cox Processes
Efficient Bayesian Inference of Sigmoidal Gaussian Cox Processes
Christian Donner
Manfred Opper
65
36
0
02 Aug 2018
Scalable Bayesian Learning for State Space Models using Variational
  Inference with SMC Samplers
Scalable Bayesian Learning for State Space Models using Variational Inference with SMC Samplers
Marcel Hirt
P. Dellaportas
BDL
50
10
0
23 May 2018
Deep Reinforcement Learning of Marked Temporal Point Processes
Deep Reinforcement Learning of Marked Temporal Point Processes
U. Upadhyay
A. De
Manuel Gomez Rodriguez
BDLOffRL
56
112
0
23 May 2018
Advances in Variational Inference
Advances in Variational Inference
Cheng Zhang
Judith Butepage
Hedvig Kjellström
Stephan Mandt
BDL
178
691
0
15 Nov 2017
Tick: a Python library for statistical learning, with a particular
  emphasis on time-dependent modelling
Tick: a Python library for statistical learning, with a particular emphasis on time-dependent modelling
Emmanuel Bacry
Martin Bompaire
Stéphane Gaïffas
Søren Poulsen
67
71
0
10 Jul 2017
Wasserstein Learning of Deep Generative Point Process Models
Wasserstein Learning of Deep Generative Point Process Models
Shuai Xiao
Mehrdad Farajtabar
X. Ye
Junchi Yan
Le Song
H. Zha
DiffM
56
170
0
23 May 2017
Masked Autoregressive Flow for Density Estimation
Masked Autoregressive Flow for Density Estimation
George Papamakarios
Theo Pavlakou
Iain Murray
210
1,354
0
19 May 2017
Efficient parameter sampling for Markov jump processes
Efficient parameter sampling for Markov jump processes
Boqian Zhang
Vinayak A. Rao
107
8
0
07 Apr 2017
A Hidden Absorbing Semi-Markov Model for Informatively Censored Temporal
  Data: Learning and Inference
A Hidden Absorbing Semi-Markov Model for Informatively Censored Temporal Data: Learning and Inference
Ahmed Alaa
M. Schaar
55
32
0
18 Dec 2016
Categorical Reparameterization with Gumbel-Softmax
Categorical Reparameterization with Gumbel-Softmax
Eric Jang
S. Gu
Ben Poole
BDL
334
5,364
0
03 Nov 2016
WaveNet: A Generative Model for Raw Audio
WaveNet: A Generative Model for Raw Audio
Aaron van den Oord
Sander Dieleman
Heiga Zen
Karen Simonyan
Oriol Vinyals
Alex Graves
Nal Kalchbrenner
A. Senior
Koray Kavukcuoglu
DiffM
406
7,399
0
12 Sep 2016
Conditional Image Generation with PixelCNN Decoders
Conditional Image Generation with PixelCNN Decoders
Aaron van den Oord
Nal Kalchbrenner
Oriol Vinyals
L. Espeholt
Alex Graves
Koray Kavukcuoglu
VLM
209
2,513
0
16 Jun 2016
Improving Variational Inference with Inverse Autoregressive Flow
Improving Variational Inference with Inverse Autoregressive Flow
Diederik P. Kingma
Tim Salimans
Rafal Jozefowicz
Xi Chen
Ilya Sutskever
Max Welling
BDLDRL
139
1,820
0
15 Jun 2016
Faster Eigenvector Computation via Shift-and-Invert Preconditioning
Faster Eigenvector Computation via Shift-and-Invert Preconditioning
Dan Garber
Laurent Dinh
Chi Jin
Jascha Narain Sohl-Dickstein
Samy Bengio
Praneeth Netrapalli
Aaron Sidford
266
3,702
0
26 May 2016
A note on the evaluation of generative models
A note on the evaluation of generative models
Lucas Theis
Aaron van den Oord
Matthias Bethge
EGVM
126
1,145
0
05 Nov 2015
MADE: Masked Autoencoder for Distribution Estimation
MADE: Masked Autoencoder for Distribution Estimation
M. Germain
Karol Gregor
Iain Murray
Hugo Larochelle
OODSyDaUQCV
172
868
0
12 Feb 2015
Adam: A Method for Stochastic Optimization
Adam: A Method for Stochastic Optimization
Diederik P. Kingma
Jimmy Ba
ODL
1.9K
150,115
0
22 Dec 2014
Efficient Inference of Gaussian Process Modulated Renewal Processes with
  Application to Medical Event Data
Efficient Inference of Gaussian Process Modulated Renewal Processes with Application to Medical Event Data
Thomas A. Lasko
75
45
0
19 Feb 2014
Fast MCMC sampling for Markov jump processes and extensions
Fast MCMC sampling for Markov jump processes and extensions
Vinayak A. Rao
Yee Whye Teh
85
117
0
23 Aug 2012
1