Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2006.11469
Cited By
v1
v2 (latest)
Coupling-based Invertible Neural Networks Are Universal Diffeomorphism Approximators
20 June 2020
Takeshi Teshima
Isao Ishikawa
Koichi Tojo
Kenta Oono
Masahiro Ikeda
Masashi Sugiyama
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Coupling-based Invertible Neural Networks Are Universal Diffeomorphism Approximators"
50 / 76 papers shown
Title
FORT: Forward-Only Regression Training of Normalizing Flows
Danyal Rehman
Oscar Davis
Jiarui Lu
Jian Tang
M. Bronstein
Yoshua Bengio
Alexander Tong
A. Bose
OOD
44
0
0
01 Jun 2025
Design of Restricted Normalizing Flow towards Arbitrary Stochastic Policy with Computational Efficiency
Taisuke Kobayashi
Takumi Aotani
176
5
0
17 Dec 2024
Can neural operators always be continuously discretized?
Takashi Furuya
Michael Puthawala
Maarten V. de Hoop
Matti Lassas
113
1
0
04 Dec 2024
Deep Koopman-layered Model with Universal Property Based on Toeplitz Matrices
Yuka Hashimoto
Tomoharu Iwata
87
0
0
03 Oct 2024
Deep Learning in Medical Image Registration: Magic or Mirage?
Rohit Jena
Deeksha Sethi
Pratik Chaudhari
James C. Gee
OOD
82
10
0
11 Aug 2024
Flexible Tails for Normalizing Flows
Tennessee Hickling
Dennis Prangle
64
0
0
22 Jun 2024
VeriFlow: Modeling Distributions for Neural Network Verification
Faried Abu Zaid
Daniel Neider
Mustafa Yalçıner
135
0
0
20 Jun 2024
Weak Generative Sampler to Efficiently Sample Invariant Distribution of Stochastic Differential Equation
Zhiqiang Cai
Yu Cao
Yuanfei Huang
Xiang Zhou
DiffM
96
0
0
29 May 2024
Transport of Algebraic Structure to Latent Embeddings
Samuel Pfrommer
Brendon G. Anderson
Somayeh Sojoudi
68
0
0
27 May 2024
Enhancing Accuracy in Generative Models via Knowledge Transfer
Xinyu Tian
Xiaotong Shen
84
2
0
27 May 2024
ASPIRE: Iterative Amortized Posterior Inference for Bayesian Inverse Problems
Rafael Orozco
Ali Siahkoohi
M. Louboutin
Felix J. Herrmann
77
2
0
08 May 2024
Learning Neural Contracting Dynamics: Extended Linearization and Global Guarantees
Sean Jaffe
A. Davydov
Deniz Lapsekili
Ambuj K. Singh
Francesco Bullo
72
2
0
12 Feb 2024
Dimension Mixer: A Generalized Method for Structured Sparsity in Deep Neural Networks
Suman Sapkota
Binod Bhattarai
88
0
0
30 Nov 2023
Free-form Flows: Make Any Architecture a Normalizing Flow
Felix Dräxler
Peter Sorrenson
Lea Zimmermann
Armand Rousselot
Ullrich Kothe
TPM
DRL
AI4CE
BDL
103
11
0
25 Oct 2023
On the Stability of Iterative Retraining of Generative Models on their own Data
Quentin Bertrand
A. Bose
Alexandre Duplessis
Marco Jiralerspong
Gauthier Gidel
166
51
0
30 Sep 2023
Learning Orbitally Stable Systems for Diagrammatically Teaching
Weiming Zhi
Tianyi Zhang
Matthew Johnson-Roberson
69
3
0
19 Sep 2023
Finding emergence in data by maximizing effective information
Mingzhe Yang
Zhipeng Wang
Kaiwei Liu
Ying Rong
Bing Yuan
Jiang Zhang
CML
53
6
0
19 Aug 2023
On the Approximation of Bi-Lipschitz Maps by Invertible Neural Networks
Bangti Jin
Zehui Zhou
Jun Zou
88
3
0
18 Aug 2023
Sig-Splines: universal approximation and convex calibration of time series generative models
Magnus Wiese
Phillip Murray
R. Korn
AI4TS
151
1
0
19 Jul 2023
On the Convergence Rate of Gaussianization with Random Rotations
Felix Dräxler
Lars Kühmichel
Armand Rousselot
Jens Müller
Christoph Schnörr
Ullrich Kothe
85
3
0
23 Jun 2023
Globally injective and bijective neural operators
Takashi Furuya
Michael Puthawala
Matti Lassas
Maarten V. de Hoop
92
11
0
06 Jun 2023
Learning Linear Causal Representations from Interventions under General Nonlinear Mixing
Simon Buchholz
Goutham Rajendran
Elan Rosenfeld
Bryon Aragam
Bernhard Schölkopf
Pradeep Ravikumar
CML
110
65
0
04 Jun 2023
Minimum Width of Leaky-ReLU Neural Networks for Uniform Universal Approximation
Liang Li
Yifei Duan
Guanghua Ji
Yongqiang Cai
MLT
96
14
0
29 May 2023
Bounded KRnet and its applications to density estimation and approximation
Lisheng Zeng
Xiaoliang Wan
Tao Zhou
66
5
0
15 May 2023
A Flow-Based Generative Model for Rare-Event Simulation
Lachlan J. Gibson
Marcus Hoerger
Dirk P. Kroese
50
4
0
13 May 2023
Conditional Generative Models are Provably Robust: Pointwise Guarantees for Bayesian Inverse Problems
Fabian Altekrüger
Paul Hagemann
Gabriele Steidl
TPM
64
9
0
28 Mar 2023
LU-Net: Invertible Neural Networks Based on Matrix Factorization
Robin Shing Moon Chan
Sarina Penquitt
Hanno Gottschalk
BDL
67
4
0
21 Feb 2023
Certified Invertibility in Neural Networks via Mixed-Integer Programming
Tianqi Cui
Tom S. Bertalan
George J. Pappas
M. Morari
Ioannis G. Kevrekidis
Mahyar Fazlyab
AAML
63
2
0
27 Jan 2023
Whitening Convergence Rate of Coupling-based Normalizing Flows
Felix Dräxler
Christoph Schnörr
Ullrich Kothe
120
7
0
25 Oct 2022
Transfer learning with affine model transformation
Shunya Minami
Kenji Fukumizu
Yoshihiro Hayashi
Ryo Yoshida
69
1
0
18 Oct 2022
Invertible Monotone Operators for Normalizing Flows
Byeongkeun Ahn
Chiyoon Kim
Youngjoon Hong
Hyunwoo J. Kim
TPM
105
8
0
15 Oct 2022
Approximation of nearly-periodic symplectic maps via structure-preserving neural networks
Valentin Duruisseaux
J. Burby
Q. Tang
99
11
0
11 Oct 2022
Invertible Rescaling Network and Its Extensions
Mingqing Xiao
Shuxin Zheng
Chang-Shu Liu
Zhouchen Lin
Tie-Yan Liu
71
28
0
09 Oct 2022
Vanilla Feedforward Neural Networks as a Discretization of Dynamical Systems
Yifei Duan
Liang Li
Guanghua Ji
Yongqiang Cai
56
5
0
22 Sep 2022
Reliable amortized variational inference with physics-based latent distribution correction
Ali Siahkoohi
G. Rizzuti
Rafael Orozco
Felix J. Herrmann
83
29
0
24 Jul 2022
Variational Flow Graphical Model
Shaogang Ren
Belhal Karimi
Dingcheng Li
Ping Li
93
4
0
06 Jul 2022
Bridging Mean-Field Games and Normalizing Flows with Trajectory Regularization
Han Huang
Jiajia Yu
Jie Chen
Rongjie Lai
AI4CE
68
18
0
30 Jun 2022
Gradual Domain Adaptation via Normalizing Flows
Shogo Sagawa
H. Hino
CLL
OOD
107
10
0
23 Jun 2022
Identifiability of deep generative models without auxiliary information
Bohdan Kivva
Goutham Rajendran
Pradeep Ravikumar
Bryon Aragam
DRL
117
53
0
20 Jun 2022
C
∗
C^*
C
∗
-algebra Net: A New Approach Generalizing Neural Network Parameters to
C
∗
C^*
C
∗
-algebra
Yuka Hashimoto
Zhao Wang
Tomoko Matsui
55
8
0
20 Jun 2022
Variational Monte Carlo Approach to Partial Differential Equations with Neural Networks
M. Reh
M. Gärttner
63
8
0
04 Jun 2022
PatchNR: Learning from Very Few Images by Patch Normalizing Flow Regularization
Fabian Altekrüger
Alexander Denker
Paul Hagemann
J. Hertrich
Peter Maass
Gabriele Steidl
MedIm
86
27
0
24 May 2022
Flow-based Recurrent Belief State Learning for POMDPs
Xiaoyu Chen
Yao Mu
Ping Luo
Sheng Li
Jianyu Chen
85
19
0
23 May 2022
Learning reversible symplectic dynamics
Riccardo Valperga
K. Webster
Victoria G Klein
D. Turaev
J. Lamb
AI4CE
41
14
0
26 Apr 2022
Universal approximation property of invertible neural networks
Isao Ishikawa
Takeshi Teshima
Koichi Tojo
Kenta Oono
Masahiro Ikeda
Masashi Sugiyama
107
31
0
15 Apr 2022
Universality of parametric Coupling Flows over parametric diffeomorphisms
Junlong Lyu
Zhitang Chen
Chang Feng
Wenjing Cun
Shengyu Zhu
Yanhui Geng
Zhijie Xu
Yuxiao Chen
63
3
0
07 Feb 2022
Neural Information Squeezer for Causal Emergence
Jiang Zhang
Kaiwei Liu
CML
49
14
0
25 Jan 2022
Heavy-tailed Sampling via Transformed Unadjusted Langevin Algorithm
Ye He
Krishnakumar Balasubramanian
Murat A. Erdogdu
83
5
0
20 Jan 2022
Rethinking Importance Weighting for Transfer Learning
Nan Lu
Tianyi Zhang
Tongtong Fang
Takeshi Teshima
Masashi Sugiyama
51
11
0
19 Dec 2021
ELF: Exact-Lipschitz Based Universal Density Approximator Flow
Achintya Gopal
54
1
0
13 Dec 2021
1
2
Next