ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2006.10605
  4. Cited By
Riemannian Continuous Normalizing Flows

Riemannian Continuous Normalizing Flows

18 June 2020
Emile Mathieu
Maximilian Nickel
    AI4CE
ArXivPDFHTML

Papers citing "Riemannian Continuous Normalizing Flows"

34 / 34 papers shown
Title
Efficient Diffusion Models for Symmetric Manifolds
Efficient Diffusion Models for Symmetric Manifolds
Oren Mangoubi
Neil He
Nisheeth K. Vishnoi
MedIm
68
0
0
27 May 2025
Spherical Tree-Sliced Wasserstein Distance
Spherical Tree-Sliced Wasserstein Distance
Hoang V. Tran
Thanh T. Chu
K. Nguyen
Trang Pham
Tam Le
Trung Quoc Nguyen
OT
84
5
0
14 Mar 2025
FlowDock: Geometric Flow Matching for Generative Protein-Ligand Docking and Affinity Prediction
FlowDock: Geometric Flow Matching for Generative Protein-Ligand Docking and Affinity Prediction
Alex Morehead
Jianlin Cheng
OOD
156
3
0
14 Dec 2024
Categorical Flow Matching on Statistical Manifolds
Categorical Flow Matching on Statistical Manifolds
Chaoran Cheng
Jiahan Li
Jian-wei Peng
Ge Liu
95
11
0
26 May 2024
Trivialized Momentum Facilitates Diffusion Generative Modeling on Lie Groups
Trivialized Momentum Facilitates Diffusion Generative Modeling on Lie Groups
Yuchen Zhu
Tianrong Chen
Lingkai Kong
Evangelos A. Theodorou
Molei Tao
DiffM
78
6
0
25 May 2024
Manifold GCN: Diffusion-based Convolutional Neural Network for Manifold-valued Graphs
Manifold GCN: Diffusion-based Convolutional Neural Network for Manifold-valued Graphs
M. Hanik
Gabriele Steidl
C. V. Tycowicz
GNN
MedIm
92
3
0
25 Jan 2024
Neural Manifold Ordinary Differential Equations
Neural Manifold Ordinary Differential Equations
Aaron Lou
Derek Lim
Isay Katsman
Leo Huang
Qingxuan Jiang
Ser-Nam Lim
Christopher De Sa
BDL
AI4CE
60
81
0
18 Jun 2020
Manifold GPLVMs for discovering non-Euclidean latent structure in neural
  data
Manifold GPLVMs for discovering non-Euclidean latent structure in neural data
Kristopher T. Jensen
Ta-Chu Kao
Marco Tripodi
Guillaume Hennequin
DRL
53
32
0
12 Jun 2020
Neural Ordinary Differential Equations on Manifolds
Neural Ordinary Differential Equations on Manifolds
Luca Falorsi
Patrick Forré
BDL
AI4CE
43
33
0
11 Jun 2020
Decision-Making with Auto-Encoding Variational Bayes
Decision-Making with Auto-Encoding Variational Bayes
Romain Lopez
Pierre Boyeau
Nir Yosef
Michael I. Jordan
Jeffrey Regier
BDL
380
10,591
0
17 Feb 2020
Latent Variable Modelling with Hyperbolic Normalizing Flows
Latent Variable Modelling with Hyperbolic Normalizing Flows
A. Bose
Ariella Smofsky
Renjie Liao
Prakash Panangaden
William L. Hamilton
DRL
42
69
0
15 Feb 2020
How to train your neural ODE: the world of Jacobian and kinetic
  regularization
How to train your neural ODE: the world of Jacobian and kinetic regularization
Chris Finlay
J. Jacobsen
L. Nurbekyan
Adam M. Oberman
49
300
0
07 Feb 2020
Normalizing Flows on Tori and Spheres
Normalizing Flows on Tori and Spheres
Danilo Jimenez Rezende
George Papamakarios
S. Racanière
M. S. Albergo
G. Kanwar
P. Shanahan
Kyle Cranmer
TPM
80
155
0
06 Feb 2020
Normalizing Flows for Probabilistic Modeling and Inference
Normalizing Flows for Probabilistic Modeling and Inference
George Papamakarios
Eric T. Nalisnick
Danilo Jimenez Rezende
S. Mohamed
Balaji Lakshminarayanan
TPM
AI4CE
199
1,691
0
05 Dec 2019
Mixed-curvature Variational Autoencoders
Mixed-curvature Variational Autoencoders
Ondrej Skopek
O. Ganea
Gary Bécigneul
CML
DRL
BDL
57
102
0
19 Nov 2019
Residual Flows for Invertible Generative Modeling
Residual Flows for Invertible Generative Modeling
Ricky T. Q. Chen
Jens Behrmann
David Duvenaud
J. Jacobsen
BDL
TPM
DRL
106
377
0
06 Jun 2019
A Wrapped Normal Distribution on Hyperbolic Space for Gradient-Based
  Learning
A Wrapped Normal Distribution on Hyperbolic Space for Gradient-Based Learning
Yoshihiro Nagano
Shoichiro Yamaguchi
Yasuhiro Fujita
Masanori Koyama
BDL
DRL
40
16
0
08 Feb 2019
Continuous Hierarchical Representations with Poincaré Variational
  Auto-Encoders
Continuous Hierarchical Representations with Poincaré Variational Auto-Encoders
Emile Mathieu
Charline Le Lan
Chris J. Maddison
Ryota Tomioka
Yee Whye Teh
BDL
DRL
74
178
0
17 Jan 2019
Deep Diffeomorphic Normalizing Flows
Deep Diffeomorphic Normalizing Flows
Hadi Salman
Payman Yadollahpour
Tom Fletcher
N. Batmanghelich
43
27
0
08 Oct 2018
FFJORD: Free-form Continuous Dynamics for Scalable Reversible Generative
  Models
FFJORD: Free-form Continuous Dynamics for Scalable Reversible Generative Models
Will Grathwohl
Ricky T. Q. Chen
J. Bettencourt
Ilya Sutskever
David Duvenaud
DRL
134
873
0
02 Oct 2018
Riemannian Adaptive Optimization Methods
Riemannian Adaptive Optimization Methods
Gary Bécigneul
O. Ganea
ODL
93
257
0
01 Oct 2018
Neural Ordinary Differential Equations
Neural Ordinary Differential Equations
T. Chen
Yulia Rubanova
J. Bettencourt
David Duvenaud
AI4CE
399
5,099
0
19 Jun 2018
Hyperbolic Neural Networks
Hyperbolic Neural Networks
O. Ganea
Gary Bécigneul
Thomas Hofmann
52
603
0
23 May 2018
Hyperspherical Variational Auto-Encoders
Hyperspherical Variational Auto-Encoders
Tim R. Davidson
Luca Falorsi
Nicola De Cao
Thomas Kipf
Jakub M. Tomczak
DRL
BDL
100
385
0
03 Apr 2018
Sensitivity and Generalization in Neural Networks: an Empirical Study
Sensitivity and Generalization in Neural Networks: an Empirical Study
Roman Novak
Yasaman Bahri
Daniel A. Abolafia
Jeffrey Pennington
Jascha Narain Sohl-Dickstein
AAML
93
439
0
23 Feb 2018
Machine Learning for the Geosciences: Challenges and Opportunities
Machine Learning for the Geosciences: Challenges and Opportunities
Anuj Karpatne
I. Ebert‐Uphoff
S. Ravela
H. Babaie
Vipin Kumar
AI4CE
59
393
0
13 Nov 2017
von Mises-Fisher Mixture Model-based Deep learning: Application to Face
  Verification
von Mises-Fisher Mixture Model-based Deep learning: Application to Face Verification
Abul Hasnat
Julien Bohné
Jonathan Milgram
S. Gentric
Liming Chen
CVBM
84
93
0
13 Jun 2017
Poincaré Embeddings for Learning Hierarchical Representations
Poincaré Embeddings for Learning Hierarchical Representations
Maximilian Nickel
Douwe Kiela
83
1,304
0
22 May 2017
Masked Autoregressive Flow for Density Estimation
Masked Autoregressive Flow for Density Estimation
George Papamakarios
Theo Pavlakou
Iain Murray
204
1,351
0
19 May 2017
Normalizing Flows on Riemannian Manifolds
Normalizing Flows on Riemannian Manifolds
Mevlana Gemici
Danilo Jimenez Rezende
S. Mohamed
BDL
66
104
0
07 Nov 2016
Faster Eigenvector Computation via Shift-and-Invert Preconditioning
Faster Eigenvector Computation via Shift-and-Invert Preconditioning
Dan Garber
Laurent Dinh
Chi Jin
Jascha Narain Sohl-Dickstein
Samy Bengio
Praneeth Netrapalli
Aaron Sidford
263
78
0
26 May 2016
Variational Inference with Normalizing Flows
Variational Inference with Normalizing Flows
Danilo Jimenez Rezende
S. Mohamed
DRL
BDL
308
4,175
0
21 May 2015
Adam: A Method for Stochastic Optimization
Adam: A Method for Stochastic Optimization
Diederik P. Kingma
Jimmy Ba
ODL
1.7K
150,006
0
22 Dec 2014
Stochastic gradient descent on Riemannian manifolds
Stochastic gradient descent on Riemannian manifolds
Silvere Bonnabel
92
591
0
22 Nov 2011
1