Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2006.09797
Cited By
A Non-Asymptotic Analysis for Stein Variational Gradient Descent
17 June 2020
Anna Korba
Adil Salim
Michael Arbel
Giulia Luise
Arthur Gretton
Re-assign community
ArXiv
PDF
HTML
Papers citing
"A Non-Asymptotic Analysis for Stein Variational Gradient Descent"
23 / 23 papers shown
Title
The equivalence between Stein variational gradient descent and black-box variational inference
Casey Chu
Kentaro Minami
Kenji Fukumizu
23
7
0
04 Apr 2020
Rapid Convergence of the Unadjusted Langevin Algorithm: Isoperimetry Suffices
Santosh Vempala
Andre Wibisono
43
262
0
20 Mar 2019
Stein Variational Gradient Descent as Moment Matching
Qiang Liu
Dilin Wang
69
38
0
27 Oct 2018
A Stein variational Newton method
Gianluca Detommaso
Tiangang Cui
Alessio Spantini
Youssef Marzouk
Robert Scheichl
83
115
0
08 Jun 2018
Scaling limit of the Stein variational gradient descent: the mean field regime
Jianfeng Lu
Yulong Lu
J. Nolen
22
79
0
10 May 2018
Analysis of Langevin Monte Carlo via convex optimization
Alain Durmus
Szymon Majewski
B. Miasojedow
57
217
0
26 Feb 2018
Sampling as optimization in the space of measures: The Langevin dynamics as a composite optimization problem
Andre Wibisono
80
178
0
22 Feb 2018
Riemannian Stein Variational Gradient Descent for Bayesian Inference
Chang-rui Liu
Jun Zhu
49
67
0
30 Nov 2017
Advances in Variational Inference
Cheng Zhang
Judith Butepage
Hedvig Kjellström
Stephan Mandt
BDL
130
684
0
15 Nov 2017
User-friendly guarantees for the Langevin Monte Carlo with inaccurate gradient
A. Dalalyan
Avetik G. Karagulyan
60
296
0
29 Sep 2017
Learning to Draw Samples with Amortized Stein Variational Gradient Descent
Yihao Feng
Dilin Wang
Qiang Liu
GAN
BDL
46
79
0
20 Jul 2017
Stein Variational Gradient Descent as Gradient Flow
Qiang Liu
OT
60
274
0
25 Apr 2017
Stein Variational Policy Gradient
Yang Liu
Prajit Ramachandran
Qiang Liu
Jian-wei Peng
53
138
0
07 Apr 2017
Measuring Sample Quality with Kernels
Jackson Gorham
Lester W. Mackey
116
223
0
06 Mar 2017
Learning to Draw Samples: With Application to Amortized MLE for Generative Adversarial Learning
Dilin Wang
Qiang Liu
GAN
BDL
105
119
0
06 Nov 2016
Linear Convergence of Gradient and Proximal-Gradient Methods Under the Polyak-Łojasiewicz Condition
Hamed Karimi
J. Nutini
Mark Schmidt
221
1,208
0
16 Aug 2016
Stein Variational Gradient Descent: A General Purpose Bayesian Inference Algorithm
Qiang Liu
Dilin Wang
BDL
61
1,082
0
16 Aug 2016
High-dimensional Bayesian inference via the Unadjusted Langevin Algorithm
Alain Durmus
Eric Moulines
71
352
0
05 May 2016
A Kernelized Stein Discrepancy for Goodness-of-fit Tests and Model Evaluation
Qiang Liu
Jason D. Lee
Michael I. Jordan
94
478
0
10 Feb 2016
A Kernel Test of Goodness of Fit
Kacper P. Chwialkowski
Heiko Strathmann
Arthur Gretton
BDL
159
327
0
09 Feb 2016
Black Box Variational Inference
Rajesh Ranganath
S. Gerrish
David M. Blei
DRL
BDL
68
1,157
0
31 Dec 2013
Rényi Divergence and Kullback-Leibler Divergence
T. Erven
P. Harremoes
60
1,326
0
12 Jun 2012
Universality, Characteristic Kernels and RKHS Embedding of Measures
Bharath K. Sriperumbudur
Kenji Fukumizu
Gert R. G. Lanckriet
154
526
0
03 Mar 2010
1