ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2006.09239
  4. Cited By
Posterior Network: Uncertainty Estimation without OOD Samples via
  Density-Based Pseudo-Counts

Posterior Network: Uncertainty Estimation without OOD Samples via Density-Based Pseudo-Counts

16 June 2020
Bertrand Charpentier
Daniel Zügner
Stephan Günnemann
    UQCV
    UD
    EDL
    BDL
ArXivPDFHTML

Papers citing "Posterior Network: Uncertainty Estimation without OOD Samples via Density-Based Pseudo-Counts"

31 / 31 papers shown
Title
Reducing Aleatoric and Epistemic Uncertainty through Multi-modal Data Acquisition
Reducing Aleatoric and Epistemic Uncertainty through Multi-modal Data Acquisition
Arthur Hoarau
Benjamin Quost
Sébastien Destercke
Willem Waegeman
UQCV
UD
PER
72
0
0
30 Jan 2025
vMF-Contact: Uncertainty-aware Evidential Learning for Probabilistic Contact-grasp in Noisy Clutter
vMF-Contact: Uncertainty-aware Evidential Learning for Probabilistic Contact-grasp in Noisy Clutter
Yitian Shi
Edgar Welte
Maximilian Gilles
Rania Rayyes
32
3
0
06 Nov 2024
DEMAU: Decompose, Explore, Model and Analyse Uncertainties
DEMAU: Decompose, Explore, Model and Analyse Uncertainties
A. Hoarau
Vincent Lemaire
UQCV
UD
PER
31
0
0
12 Sep 2024
Efficient Nearest Neighbor based Uncertainty Estimation for Natural Language Processing Tasks
Efficient Nearest Neighbor based Uncertainty Estimation for Natural Language Processing Tasks
Wataru Hashimoto
Hidetaka Kamigaito
Taro Watanabe
57
0
0
02 Jul 2024
Uncertainty modeling for fine-tuned implicit functions
Uncertainty modeling for fine-tuned implicit functions
A. Susmelj
Mael Macuglia
Nataša Tagasovska
Reto Sutter
Sebastiano Caprara
Jean-Philippe Thiran
E. Konukoglu
70
1
0
17 Jun 2024
Improvements on Uncertainty Quantification for Node Classification via
  Distance-Based Regularization
Improvements on Uncertainty Quantification for Node Classification via Distance-Based Regularization
Russell Hart
Linlin Yu
Yifei Lou
Feng Chen
UQCV
20
4
0
10 Nov 2023
Discretization-Induced Dirichlet Posterior for Robust Uncertainty
  Quantification on Regression
Discretization-Induced Dirichlet Posterior for Robust Uncertainty Quantification on Regression
Xuanlong Yu
Gianni Franchi
Jindong Gu
Emanuel Aldea
UQCV
16
4
0
17 Aug 2023
Robust Uncertainty Estimation for Classification of Maritime Objects
Robust Uncertainty Estimation for Classification of Maritime Objects
J. Becktor
Frederik E. T. Schöller
Evangelos Boukas
Lazaros Nalpantidis
UQCV
OOD
42
2
0
03 Jul 2023
E-NER: Evidential Deep Learning for Trustworthy Named Entity Recognition
E-NER: Evidential Deep Learning for Trustworthy Named Entity Recognition
Zhen Zhang
Mengting Hu
Shiwan Zhao
Minlie Huang
Haotian Wang
Lemao Liu
Zhirui Zhang
Zhe Liu
Bingzhe Wu
EDL
35
10
0
29 May 2023
Post-hoc Uncertainty Learning using a Dirichlet Meta-Model
Post-hoc Uncertainty Learning using a Dirichlet Meta-Model
Maohao Shen
Yuheng Bu
P. Sattigeri
S. Ghosh
Subhro Das
G. Wornell
UQCV
OOD
BDL
13
31
0
14 Dec 2022
Interpretable Self-Aware Neural Networks for Robust Trajectory
  Prediction
Interpretable Self-Aware Neural Networks for Robust Trajectory Prediction
Masha Itkina
Mykel J. Kochenderfer
EDL
UQCV
21
26
0
16 Nov 2022
Quantifying Model Uncertainty for Semantic Segmentation using Operators
  in the RKHS
Quantifying Model Uncertainty for Semantic Segmentation using Operators in the RKHS
Rishabh Singh
José C. Príncipe
UQCV
28
3
0
03 Nov 2022
JuryGCN: Quantifying Jackknife Uncertainty on Graph Convolutional
  Networks
JuryGCN: Quantifying Jackknife Uncertainty on Graph Convolutional Networks
Jian Kang
Qinghai Zhou
Hanghang Tong
UQCV
30
21
0
12 Oct 2022
Sample-based Uncertainty Quantification with a Single Deterministic
  Neural Network
Sample-based Uncertainty Quantification with a Single Deterministic Neural Network
T. Kanazawa
Chetan Gupta
UQCV
30
4
0
17 Sep 2022
Quantifying Aleatoric and Epistemic Uncertainty in Machine Learning: Are
  Conditional Entropy and Mutual Information Appropriate Measures?
Quantifying Aleatoric and Epistemic Uncertainty in Machine Learning: Are Conditional Entropy and Mutual Information Appropriate Measures?
Lisa Wimmer
Yusuf Sale
Paul Hofman
Bern Bischl
Eyke Hüllermeier
PER
UD
34
64
0
07 Sep 2022
Distributional Gaussian Processes Layers for Out-of-Distribution
  Detection
Distributional Gaussian Processes Layers for Out-of-Distribution Detection
S. Popescu
D. Sharp
James H. Cole
Konstantinos Kamnitsas
Ben Glocker
OOD
23
0
0
27 Jun 2022
Towards OOD Detection in Graph Classification from Uncertainty
  Estimation Perspective
Towards OOD Detection in Graph Classification from Uncertainty Estimation Perspective
Gleb Bazhenov
Sergei Ivanov
Maxim Panov
Alexey Zaytsev
Evgeny Burnaev
UQCV
25
9
0
21 Jun 2022
A Survey on Uncertainty Reasoning and Quantification for Decision
  Making: Belief Theory Meets Deep Learning
A Survey on Uncertainty Reasoning and Quantification for Decision Making: Belief Theory Meets Deep Learning
Zhen Guo
Zelin Wan
Qisheng Zhang
Xujiang Zhao
F. Chen
Jin-Hee Cho
Qi Zhang
Lance M. Kaplan
Dong-Ho Jeong
A. Jøsang
UQCV
EDL
17
10
0
12 Jun 2022
Trusted Multi-View Classification with Dynamic Evidential Fusion
Trusted Multi-View Classification with Dynamic Evidential Fusion
Zongbo Han
Changqing Zhang
H. Fu
Joey Tianyi Zhou
EDL
26
217
0
25 Apr 2022
Pitfalls of Epistemic Uncertainty Quantification through Loss
  Minimisation
Pitfalls of Epistemic Uncertainty Quantification through Loss Minimisation
Viktor Bengs
Eyke Hüllermeier
Willem Waegeman
EDL
UQCV
UD
24
36
0
11 Mar 2022
Graph Posterior Network: Bayesian Predictive Uncertainty for Node
  Classification
Graph Posterior Network: Bayesian Predictive Uncertainty for Node Classification
Maximilian Stadler
Bertrand Charpentier
Simon Geisler
Daniel Zügner
Stephan Günnemann
UQCV
BDL
36
80
0
26 Oct 2021
Deep Classifiers with Label Noise Modeling and Distance Awareness
Deep Classifiers with Label Noise Modeling and Distance Awareness
Vincent Fortuin
Mark Collier
F. Wenzel
J. Allingham
J. Liu
Dustin Tran
Balaji Lakshminarayanan
Jesse Berent
Rodolphe Jenatton
E. Kokiopoulou
UQCV
34
11
0
06 Oct 2021
Stochastic Neural Radiance Fields: Quantifying Uncertainty in Implicit
  3D Representations
Stochastic Neural Radiance Fields: Quantifying Uncertainty in Implicit 3D Representations
Jianxiong Shen
Adria Ruiz
Antonio Agudo
Francesc Moreno-Noguer
BDL
22
68
0
05 Sep 2021
Evidential Deep Learning for Open Set Action Recognition
Evidential Deep Learning for Open Set Action Recognition
Wentao Bao
Qi Yu
Yu Kong
CML
EDL
13
135
0
21 Jul 2021
A Survey of Uncertainty in Deep Neural Networks
A Survey of Uncertainty in Deep Neural Networks
J. Gawlikowski
Cedrique Rovile Njieutcheu Tassi
Mohsin Ali
Jongseo Lee
Matthias Humt
...
R. Roscher
Muhammad Shahzad
Wen Yang
R. Bamler
Xiaoxiang Zhu
BDL
UQCV
OOD
32
1,109
0
07 Jul 2021
Towards Consistent Predictive Confidence through Fitted Ensembles
Towards Consistent Predictive Confidence through Fitted Ensembles
Navid Kardan
Ankit Sharma
Kenneth O. Stanley
FedML
OODD
16
8
0
22 Jun 2021
Graceful Degradation and Related Fields
Graceful Degradation and Related Fields
J. Dymond
31
4
0
21 Jun 2021
DEUP: Direct Epistemic Uncertainty Prediction
DEUP: Direct Epistemic Uncertainty Prediction
Salem Lahlou
Moksh Jain
Hadi Nekoei
V. Butoi
Paul Bertin
Jarrid Rector-Brooks
Maksym Korablyov
Yoshua Bengio
PER
UQLM
UQCV
UD
202
81
0
16 Feb 2021
Know Your Limits: Uncertainty Estimation with ReLU Classifiers Fails at
  Reliable OOD Detection
Know Your Limits: Uncertainty Estimation with ReLU Classifiers Fails at Reliable OOD Detection
Dennis Ulmer
Giovanni Cina
OODD
32
31
0
09 Dec 2020
Simple and Scalable Predictive Uncertainty Estimation using Deep
  Ensembles
Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles
Balaji Lakshminarayanan
Alexander Pritzel
Charles Blundell
UQCV
BDL
276
5,660
0
05 Dec 2016
Dropout as a Bayesian Approximation: Representing Model Uncertainty in
  Deep Learning
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCV
BDL
285
9,138
0
06 Jun 2015
1